催化学报 ›› 2023, Vol. 51: 101-112.DOI: 10.1016/S1872-2067(23)64479-1

• 论文 • 上一篇    下一篇

新型MIL-101(Fe)/BiOBr S型异质催化剂用于高效光催化降解抗生素和还原六价铬: 光催化性能分析和光催化机理研究

李世杰a,*(), 王春春a, 董珂欣a, 张鹏b, 陈晓波c,*(), 李鑫d,*()   

  1. a浙江海洋大学材料科学与技术学院, 国家海洋水产养殖工程研究中心, 浙江省海产品健康危险因素重点实验室, 浙江舟山316022, 中国
    b郑州大学材料科学与工程学院, 国家低碳环保材料设计国际合作中心, 河南郑州450001, 中国
    c美国密苏里大学堪萨斯城分校化学系, 美国
    d华南农业大学农业农村部能源植物资源与利用重点实验室生物质工程研究所, 广东广州510642, 中国
  • 收稿日期:2023-03-02 接受日期:2023-05-08 出版日期:2023-08-18 发布日期:2023-09-11
  • 通讯作者: *电子信箱: lishijie@zjou.edu.cn (李世杰), chenxiaobo@umkc.edu (陈晓波), xinli@scau.edu.cn (李鑫).
  • 基金资助:
    国家自然科学基金(U1809214);国家自然科学基金(51708504);浙江省自然科学基金(LY20E080014);浙江省自然科学基金(TGN23E080003);舟山市科技计划项目(2022C41011)

MIL-101(Fe)/BiOBr S-scheme photocatalyst for promoting photocatalytic abatement of Cr(VI) and enrofloxacin antibiotic: Performance and mechanism

Shijie Lia,*(), Chunchun Wanga, Kexin Donga, Peng Zhangb, Xiaobo Chenc,*(), Xin Lid,*()   

  1. aKey Laboratory of Health Risk Factors for Seafood of Zhejiang Province, National Engineering Research Center for Marine Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
    bState Centre for International Cooperation on Designer Low-carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
    cDepartment of Chemistry, University of Missouri-Kansas City, MO 64110, USA
    dInstitute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, China
  • Received:2023-03-02 Accepted:2023-05-08 Online:2023-08-18 Published:2023-09-11
  • Contact: *E-mail: lishijie@zjou.edu.cn (S. Li), chenxiaobo@umkc.edu (X. Chen), xinli@scau.edu.cn (X. Li).
  • Supported by:
    National Natural Science Foundation of China(U1809214);National Natural Science Foundation of China(51708504);Natural Science Foundation of Zhejiang Province(LY20E080014);Natural Science Foundation of Zhejiang Province(TGN23E080003);Science and Technology Project of Zhoushan(2022C41011)

摘要:

水污染对生态环境和人类健康造成了巨大危害,特别是水体中抗生素和重金属具有毒性且难生物降解,已经引起科研工作者的广泛关注.传统的水处理技术难以有效地消除这些污染物.近年来,人们致力于开发绿色、低碳且高效的光催化技术用于解决环境污染问题,该技术实现大规模应用的核心在于开发出经济、高效的光催化剂.由于单一半导体光催化材料(如BiOBr)存在一些缺陷(如有限的催化活性位点和光生电子-空穴快速复合等),因此,构建具有可见光响应、高暴露活性位点和强氧化还原能力的异质结特别是新兴的梯(S)型异质结是去除这些污染物的有效策略之一.MIL-101(Fe)是一种新型的可见光驱动的金属-有机配体框架材料,具有强还原活性、高比表面积和较好的可见光吸收能力,因此,将氧化型的BiOBr与还原型的MIL-101(Fe)进行合理设计,构筑S型异质结,有望开发出高效的催化材料.
本文采用溶剂热法成功制备了一种新型的MOF基S型异质结MIL-101(Fe)/BiOBr,用于可见光照射下光催化还原六价铬(Cr(VI))和降解抗生素恩诺沙星.结果表明,在单一污染物体系中,MIL-101(Fe)/BiOBr可有效还原99.4%的Cr(VI)和氧化分解84.4%的恩诺沙星.值得注意的是,在Cr(VI)和恩诺沙星共存的条件下,MIL-101(Fe)/BiOBr对(Cr(VI))和恩诺沙星的去除效率明显提升,这主要是由于S型催化剂、Cr(VI)和恩诺沙星之间具有协同效应.MIL-101(Fe)/BiOBr催化剂活性增强的主要因素如下: (1) MIL-101(Fe)提供了大量的活性位点,改善了催化材料的光吸收能力.(2) S型载流子分离路径不但促进了电子和空穴的高效分离,而且增强了体系的氧化还原能力.此外,采用自由基捕获实验、电子自旋共振波谱仪、液相色谱-质谱联用技术以及毒性分析软件,系统分析了光催化反应机理、抗生素分解过程和中间产物的生物毒性.综上,本文提供一种简单有效的策略来构筑高活性的MOF/无机半导体S型异质结材料用于高效净化水体环境.

关键词: MIL-101(Fe)/BiOBr, S型异质结, Cr(VI)还原, 抗生素降解, 金属-有机框架材料

Abstract:

The development of highly active, economical, and robust bifunctional photocatalysts is a priority for sustainable photocatalytic water remediation. Inadequately available reactive sites and sluggish interface photocarrier transfer and separation remain significant challenges in the photoreaction progress. In this study, the Fe-containing metal-organic framework (MOF) MIL-101(Fe) was integrated with BiOBr microspheres to form a competent S-scheme heterostructure for the photocatalytic mitigation of Cr(VI) and enrofloxacin (ENR) antibiotics. The optimal MIL-101(Fe)/BiOBr exhibited the highest photoactivity, with 99.4% of Cr(VI) and 84.4% of ENR eliminated upon visible-light illumination in a single-pollutant system. The photoactivity of MIL-101(Fe)/BiOBr in the decontamination of the Cr(VI)-ENR co-existence system exhibited a substantial enhancement when compared to that in a single system, owing to the improved utilization of electrons and holes resulting from the synergism between Cr(VI), ENR, and the photocatalyst. The enhanced photoactivity is attributed to two aspects: (1) the incorporation of MIL-101(Fe) results in an increased number of available reactive sites and improved solar harvesting properties; and (2) the S-scheme mechanism enables the effective spatial disassociation of photoexcited carriers and optimization of the photo-redox capability of the system. Through scavenging experiments, electron spin resonance characterization, liquid chromatography-tandem mass spectrometry analysis, and T.E.S.T. theoretical estimation, the catalytic mechanism, antibiotic degradation process, and biotoxicities of the degraded products were analyzed and confirmed. This study provides a viable strategy for building competent MOF-inorganic semiconductor S-scheme photocatalysts with superior photocatalytic decontamination performance.

Key words: MIL-101(Fe)/BiOBr, S-scheme heterostructure, Cr(VI) reduction, Antibiotic degradation, Metal-organic framework