催化学报 ›› 2023, Vol. 51: 145-156.DOI: 10.1016/S1872-2067(23)64484-5

• 论文 • 上一篇    下一篇

TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察

李嘉明1, 李源1, 王小田, 杨直雄, 张高科*()   

  1. 武汉理工大学矿物资源加工与环境湖北省重点实验室, 硅酸盐建筑材料国家重点实验室, 湖北武汉430070
  • 收稿日期:2023-05-18 接受日期:2023-06-28 出版日期:2023-08-18 发布日期:2023-09-11
  • 通讯作者: *电子信箱: gkzhang@whut.edu.cn (张高科).
  • 作者简介:第一联系人:1共同第一作者.
  • 基金资助:
    深圳市科技规划项目(JCYJ20200109150225155);国家自然科学基金(92163125)

Atomically dispersed Fe sites on TiO2 for boosting photocatalytic CO2 reduction: Enhanced catalytic activity, DFT calculations and mechanistic insight

Jiaming Li1, Yuan Li1, Xiaotian Wang, Zhixiong Yang, Gaoke Zhang*()   

  1. Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, Hubei, China
  • Received:2023-05-18 Accepted:2023-06-28 Online:2023-08-18 Published:2023-09-11
  • Contact: *E-mail: gkzhang@whut.edu.cn (G. Zhang).
  • About author:First author contact:1Contributed equally to this work.
  • Supported by:
    Science and Technology Planning Project of Shenzhen Municipality(JCYJ20200109150225155);National Natural Science Foundation of China(92163125)

摘要:

光催化CO2高效、环保地转化为高附加值化工产品(CH4,CO,CH3OH等),能够有效降低环境污染并且促进资源利用.商用P25(TiO2)因其具有无毒、化学稳定性和强氧化还原电位而被广泛研究.然而,TiO2的带隙高达3.0eV,只有在紫外光激发下才能产生光生载流子,这极大地限制了其在光催化领域的应用.单原子催化剂(SACs)具有金属原子利用率高、选择性高和活性高等优点,可用于精细化工合成、氧还原和污染物降解等催化领域.由于单个原子具有极高的表面自由能,因此如何稳定地保持原子分散,避免原子团聚成为SACs制备和反应过程中的一大挑战.
本文通过简单的负压封装后热解方法实现了Fe在TiO2表面的原子级分散负载,所制备的Fe SA/TiO2催化剂展现出高效的光催化CO2还原性能,并且利用多种表征手段及理论计算研究了TiO2表面Fe位点促进CO2高效转化的反应机制.扫描透射电子显微镜高角环形暗场像(HADDF-STEM)表明Fe以单原子形式分散在TiO2表面.利用X射线吸收光谱研究了10Fe SA/TiO2的配位情况和价态,结果表明,Fe的平均价态在Fe2+和Fe3+之间,10Fe SA/TiO2中存在Fe−O键而不是Fe−Fe键.光电化学性能测试结果表明,Fe单原子的引入有利于光生载流子的分离,提高了可见光的利用率.光催化CO2还原实验结果表明,最优的10Fe SA/TiO2催化剂展示了最好的光催化CO2转化为CO(48.2μmol·g‒1·h‒1)和CH4(113.4μmol·g‒1·h‒1)性能,而TiO2体系仅产生少量CO(2.7μmol·g‒1·h‒1). 13C同位素标记结果表明,产物中的C来自CO2的催化转化.通过密度泛函理论计算对Fe单原子引入增强的CO2还原性能机理进行探究,结果表明,CO2在Fe位点的吸附能显著高于TiO2中的Ti位点,Fe SA/TiO2d带中心向费米能级的偏移进一步证实了Fe位点的引入促进了催化剂对C1小分子的吸附.CO2吸附在催化剂表面的差分电荷密度分布表明,Fe SA/TiO2上的电子沿Ti-O-Fe-C路径快速转移.吉布斯自由能的计算结果表明,Fe SA/TiO2表面形成*COOH所需能量(0.89eV)明显低于TiO2(1.51eV),且CO*在Fe位点转化为CHO*和进一步加氢生成CH4在热力学上都是有利的.采用原位红外对CO2在催化剂表面反应的中间产物进行检测,结果发现*CO,*COOH,CHO*等中间产物的存在,基于上述研究提出了Fe SA/TiO2光催化还原CO2可能的反应路径.综上,本文为设计CO2转化为高附加值产物的单原子催化剂提供了有效策略.

关键词: 光催化CO2还原, 负压封装, Fe SA/TiO2, 单原子催化剂, d带中心

Abstract:

The design of photocatalysts for the stable and efficient photocatalytic reduction of CO2 without sacrificial agents remains challenging. In this study, Fe atoms were anchored on the surface of TiO2 with atomic-level dispersion using a novel negative-pressure encapsulation and pyrolysis strategy. The photoelectrochemical test results confirmed that the introduction of single Fe atoms accelerated the separation of photogenerated carriers and enhanced the TiO2 utilization rate of visible light. The optimal catalyst with atomically dispersed Fe showed excellent photocatalytic conversion of CO2 to CO (48.2 μmol·g-1·h-1) and CH4 (113.4 μmol·g-1·h-1), whereas the TiO2 system produced only trace amounts of CO (2.7 μmol·g-1·h-1). The increased CO2 adsorption energy and movement of the d-band center toward the Fermi level confirmed that single Fe sites were more favorable for the adsorption of CO2. The differential charge density distribution of CO2 adsorbed on the catalyst surface confirmed the rapid transfer of electrons along the Ti-O-Fe-C path, and the Gibbs free energy calculation further confirmed that the Fe sites were conducive to reducing the energy barrier required for the reaction. In addition, the key intermediate (*COOH) of CO2 conversion to CH4 was detected by in situ diffuse reflectance infrared Fourier transform spectroscopy, and a possible reaction pathway was proposed. This work provides an effective strategy for designing single-atom catalysts that can efficiently reduce CO2 to high-value-added products.

Key words: Photocatalytic reduction of CO2, Negative-pressure encapsulation, Fe SA/TiO2, Single atom catalyst, d-Band center