催化学报 ›› 2023, Vol. 52: 127-143.DOI: 10.1016/S1872-2067(23)64491-2

• 综述 • 上一篇    下一篇

高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢

赵彬彬a, 钟威a, 陈峰a, 王苹a, 别传彪b, 余火根a,b,*()   

  1. a武汉理工大学硅酸盐建筑材料国家重点实验室和化学化工与生命科学学院, 湖北武汉430070
    b中国地质大学材料与化学学院, 太阳燃料实验室, 湖北武汉430074
  • 收稿日期:2023-05-27 接受日期:2023-07-17 出版日期:2023-09-18 发布日期:2023-09-25
  • 通讯作者: *电子信箱: huogenyu@163.com (余火根).
  • 基金资助:
    国家自然科学基金(U22A20147);国家自然科学基金(22075220);湖北省自然科学基金(2022CFA001)

High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application

Binbin Zhaoa, Wei Zhonga, Feng Chena, Ping Wanga, Chuanbiao Bieb, Huogen Yua,b,*()   

  1. aState Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China
    bLaboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, Hubei, China
  • Received:2023-05-27 Accepted:2023-07-17 Online:2023-09-18 Published:2023-09-25
  • Contact: *E-mail: huogenyu@163.com (H. Yu).
  • About author:Huogen Yu (Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences) received his PhD in 2007 from Wuhan University of Technology (WHUT). He served as a post-doctoral fellow at the University of Tokyo from 2008 to 2010. Since 2022, he has been working in Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan). His research interests are mainly focused on the high-performance photocatalytic materials for water splitting and environmental purification. He is the author or co-author of more than 180 peer-reviewed papers and was selected as the Most Cited Chinese Researchers in 2014-2022, based on the Scopus database from Elsevier. He was invited as a member of the editorial board of Chin. J. Catal. Since 2021.
  • Supported by:
    National Natural Science Foundation of China(U22A20147);National Natural Science Foundation of China(22075220);Natural Science Foundation of Hubei Province of China(2022CFA001)

摘要:

开发清洁和可再生的氢能是解决当前环境污染和能源短缺的有效途径之一. 在众多制氢方法中, 光催化分解水产氢被认为是最具潜力的方法之一. 目前, 研究者已开发了多种光催化材料, 其中, 石墨相氮化碳(g-C3N4)具有低成本、无毒、能带结构合适和理化性质优异等优点, 在光催化产氢领域被广泛报道. 然而, 高温煅烧各种有机物前驱体制备的传统g-C3N4材料往往表现出严重的团聚和低结晶度, 并具有大量的内部和表面缺陷, 造成光生载流子的快速复合, 导致光催化性能低. 为了增强g-C3N4材料的光催化活性, 制备具有高比表面积的g-C3N4纳米片被认为是有效的方法之一, 如比较常用的方法有二次煅烧法和超声剥离法等. 然而, 由于g-C3N4纳米片是从传统g-C3N4光催化材料中剥离或脱层制备, 因而仍然表现出低的结晶度, 不利于光生电荷的有效分离和快速迁移, 光催化活性的提高有限. 相比于低结晶度的g-C3N4, 构建高晶化g-C3N4光催化剂可以有效减少其内部和表面缺陷, 进而促进光生载流子的有效分离和快速传输, 最终显著提升g-C3N4材料的光催化性能.

本文综述了高晶化g-C3N4光催化剂的最新研究进展, 重点分析和总结了高晶化g-C3N4光催化材料的微结构特征、合成方法、改性策略和在光催化产氢领域中的应用. 首先, 通过与传统高温煅烧法制备的g-C3N4光催化材料比较, 深入介绍了高晶化g-C3N4光催化剂的微结构特征(低缺陷和高度有序排列)和高晶化特性的典型表征手段(TEM和XRD), 并且详细分析了高晶化g-C3N4光催化剂的微结构对光催化反应过程的促进作用机制, 即g-C3N4光催化材料的高度有序结构可减少其内部和表面缺陷, 有效抑制光生电子和空穴的快速复合, 实现高效传输与分离. 其次, 详细总结了高晶化g-C3N4光催化剂的合成方法, 如盐辅助法(多组分盐辅助法和单组分盐辅助法)、模板法、两步煅烧法和微波辅助法等, 并对以上合成方法提升g-C3N4结晶度的原理进行了分析, 同时对这些合成方法的特征和优点进行了介绍. 此外, 具体阐述了高晶化g-C3N4光催化剂的改性策略, 包括能带工程、异质结构建和助剂修饰, 讨论了以上改性策略的特点以及对g-C3N4光催化性能增强的作用机理. 在此基础上, 对光催化分解水产氢的原理进行了分析, 同时分别从光催化半解水产氢和全解水产氢两方面系统阐述了高晶化g-C3N4光催化剂在光催化产氢领域中的应用. 最后, 对高晶化g-C3N4光催化剂的研究进展进行了总结, 并对高晶化g-C3N4材料在光催化领域中的未来发展进行了展望, 从合成与改性方法、微结构、晶化原理和光催化活性等方面指出高晶化g-C3N4光催化剂所面临的挑战和不足, 为设计与构建高活性和高晶化g-C3N4光催化剂提供了新的思路.

关键词: 光催化, 高晶化g-C3N4, 合成, 改性, 产氢

Abstract:

Graphitic carbon nitride (g-C3N4) has received extensive attention in the photocatalytic field because of its low cost, nontoxicity, suitable bandgap structure, and high physicochemical stability among diverse photocatalysts. However, traditional g-C3N4 materials prepared by the high-temperature calcination of various organic precursors generally exhibit poor crystallinity and possess numerous internal and surface defects, leading to the rapid recombination of photo-excited charges. Constructing a highly crystalline g-C3N4 photocatalyst, as opposed to the traditional poorly crystalline g-C3N4, effectively reduces internal and surface defects, facilitating efficient separation and rapid transfer of photoexcited charges. As a result, the photocatalytic performance is significantly enhanced. In this review, recent progress in highly crystalline g-C3N4 photocatalysts is summarized. The microstructural characteristics of highly crystalline g-C3N4 photocatalysts are discussed in detail. Synthetic methods for highly crystalline g-C3N4, such as the salt-assisted (multicomponent salt and single-component salt), template, two-step calcination method, microwave-assisted method, and others, are meticulously presented. Additionally, various modification strategies for highly crystalline g-C3N4, encompassing bandgap engineering, heterojunction construction, and co-catalyst modification, are presented. Subsequently, a detailed description of the photocatalytic H2-evolution applications of highly crystalline g-C3N4 materials is given. Lastly, the paper concludes with a discussion on the outlook for highly crystalline g-C3N4 photocatalysts, aiming to offer novel insights into the design of highly efficient crystalline g-C3N4 photocatalysts.

Key words: Photocatalysis, High-crystalline g-C3N4, Synthesis, Modification, H2 evolution