催化学报 ›› 2023, Vol. 54: 188-198.DOI: 10.1016/S1872-2067(23)64523-1

• 论文 • 上一篇    下一篇

具有电子转移路径的金属化氮化碳选择性再生NADH和光酶偶联CO2还原

张鹏业a,1, 董文锦a,1, 张媛媛a, 赵立楠a,b, 苑华磊a, 王传军a, 王文硕a, 王含笑a, 张洪禹a, 刘健a,b,*()   

  1. a中国科学院青岛生物能源与过程研究所, 山东能源研究院, 青岛新能源山东省实验室, 山东青岛266101
    b青岛科技大学材料科学与工程学院, 山东青岛266042
  • 收稿日期:2023-07-31 接受日期:2023-09-28 出版日期:2023-11-18 发布日期:2023-11-15
  • 通讯作者: *电子信箱: liujian@qibebt.ac.cn (刘健).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家自然科学基金(22175104);山东省自然科学基金(ZR2019ZD47);泰山学者计划

Metalated carbon nitride with facilitated electron transfer pathway for selective NADH regeneration and photoenzyme-coupled CO2 reduction

Pengye Zhanga,1, Wenjin Donga,1, Yuanyuan Zhanga, Li-Nan Zhaoa,b, Hualei Yuana, Chuanjun Wanga, Wenshuo Wanga, Hanxiao Wanga, Hongyu Zhanga, Jian Liua,b,*()   

  1. aQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, Shandong, China
    bCollege of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
  • Received:2023-07-31 Accepted:2023-09-28 Online:2023-11-18 Published:2023-11-15
  • Contact: *E-mail: liujian@qibebt.ac.cn (J. Liu).
  • About author:1Contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(22175104);Natural Science Foundation of Shandong Province(ZR2019ZD47);Taishan Scholars Program

摘要:

将CO2转化为燃料和化学品被认为是缓解能源危机的一种有效策略. 受自然光合作用的启发, 光酶偶联结合了光催化和酶催化的优点, 在绿色生物制造中具有较好的应用前景. 铑(Rh)络合物是选择性再生还原型烟酰胺腺嘌呤二核苷酸(1,4-NADH)的关键介体, 其固定化可以提高体系的可持续性, 并有效缩短电子传递路径, 因而受到广泛关注.

本文制备了联吡啶功能化的金属化氮化碳(PCNRhbpy4), 用于光酶偶联催化CO2还原. 首先以双氰胺为前驱体, 通过两步退火法制备氮化碳(PCN), 再与5,5'-二氨基-2,2'-联吡啶(DABP)进一步热缩合, 然后锚定[Cp*RhCl2]2获得PCNRhbpy4, 并通过透射电镜、扫描电镜、粉末X射线衍射、紫外可见光吸收光谱、瞬态表面光电压和荧光发射光谱等进行表征. 结果表明, 合成的PCNRhbpy4材料具有N-掺杂石墨烯结构, 且通过残余的末端联吡啶结构均匀地固定了Rh络合物. 以PCNRhbpy4作为光催化剂实现了1,4-NADH的100%选择性再生, 并在20 min内实现了80%的NADH再生. 进一步耦合固定在疏水膜上的甲酸脱氢酶, 可以有效地将CO2还原为甲酸盐, 48 h内甲酸盐浓度达到7 mmol L-1. 此外, 光催化剂的循环实验结果表明, PCNRhbpy4具有较高的稳定性. 反应机理研究结果表明, 光生电子经N-掺杂石墨烯传递到Rh活性位点, 并结合溶液中的质子, 随后氢负离子通过环滑移机制传递到NAD+, 高选择性再生1,4-NADH.

综上, 本文为Rh的固定化开辟了一条新路径, 实现了光酶催化CO2还原, 为光酶催化在绿色生物制造的实际应用提供参考.

关键词: 仿生金属化, NADH再生, 光酶偶联催化, CO2还原, 电荷转移

Abstract:

Photoenzyme-coupled catalysis, featuring the integration of photocatalysis with enzymes, is very promising for next-generation green biomanufacturing. The presence of an Rh complex is a prerequisite for the efficient photocatalytic regeneration of the reduced form of nicotinamide adenine dinucleotide (NADH), which poses the issue of immobilizing homogeneous complexes. In this study, a novel immobilization method based on the thermal polymerization of 2,2'-bipyridine-5,5'-diamine (DABP) onto a polymeric carbon nitride (PCN) framework is proposed. PCNbpy4 is metalated by immobilizing Rh on the terminal bipyridine structure. Notably, partial DABP has the ability to undergo high-temperature thermal polymerization, resulting in the formation of N-doped graphene. This N-doped graphene can be grafted onto the terminal amino group, forming a potential electron transfer pathway. Additionally, N-doped graphene, because of its good electrical conductivity, guides the photogenerated electrons toward the anchored Rh sites. The catalyst achieves exclusive regeneration of 1,4-NADH with only a 0.12% Rh atomic ratio and realizes 80% NADH regeneration in 20 min. The competitive relationship between hydrogen production and NADH regeneration is also elucidated. Combined with formate dehydrogenase immobilized on a hydrophobic membrane, CO2 reduction to formate is accomplished efficiently, and the formate concentration can accumulate to 7 mmol L-1 within 48 h.

Key words: Bioinspired metalation, NADH regeneration, Photoenzyme-coupled catalysis, CO2 reduction, Charge transfer