催化学报 ›› 2023, Vol. 54: 56-87.DOI: 10.1016/S1872-2067(23)64538-3
收稿日期:
2023-06-28
接受日期:
2023-10-08
出版日期:
2023-11-18
发布日期:
2023-11-15
通讯作者:
*电子信箱: 基金资助:
Zhechen Fana, Hao Wana, Hao Yua, Junjie Gea,b,*()
Received:
2023-06-28
Accepted:
2023-10-08
Online:
2023-11-18
Published:
2023-11-15
Contact:
*E-mail: About author:
Junjie Ge received her Ph.D. in physical chemistry from Chinese Academy of Sciences in 2010. She worked at University of South Carolina and University of Hawaii as a postdoc fellow for almost 5 years. She joined Changchun Institute of Applied Chemistry in 2015 as a professor and then joined University of Science and Technology of China in 2022 as a professor. Her research interests comprehend fuel cells, nanoscience, catalysis, and electrochemistry. She has published 100+ peer-reviewed papers on the highly reputable international journals including Nat. Sci. Rev., Joule, Chem, PNAS, J. Am. Chem. Soc., Nat. Commun., Angew. Chem. Int. Ed., Sci. Bull., Energy Environ. Sci., with several of them are ranked as highly cited papers. She serves actively as a referee for journals in ACS, Wiley, RSC, Science Direct, and several Chinese journals.
Supported by:
摘要:
实现质子交换膜燃料电池(PEMFC)的商业化应用亟需开发出低成本的高效氧还原(ORR)电催化剂以替代昂贵的Pt基材料. 过去十余年, 研究人员对由M-Nx活性位点和富缺陷碳质基底组成的热解M-N-C基单原子催化剂进行了深入的研究, 以期进一步提高催化剂的性能并降低成本. 其中, Fe-N-C基单原子催化剂表现出了较好的催化性能和巨大的应用潜力. 近年来人们发现, 在单原子催化剂中引入另一种金属原子组成的双原子催化剂具有特殊的几何构型和电子结构, 有利于反应过程中原子间相互作用, 使催化性能进一步提高. 其中, 在Fe-N-C基催化剂中引入另一种金属原子组成的Fe-M-N-C双原子催化剂(M代表金属)可以进一步激发Fe-N-C催化剂的本征活性, 相关研究也吸引了越来越多的关注.
本文综述了Fe-M-N-C基双原子催化剂催化ORR过程的研究进展. 首先, 讨论了双原子催化剂催化ORR的机制, 其中引入的第二种金属原子通过协同和/或调制效应发挥作用. 其后, 系统总结了Fe-M-N-C的合成方法、表征技术和计算方法, 以进一步推动双原子催化剂的研究. 再后, 根据金属原子之间的相互作用, 将双原子催化剂分为Marriage型和Conjunct型. 最后, 结合双原子位点的原子构型详细讨论了不同双原子催化剂的作用机制: 包括提供额外催化位点、改变吸附构型、调节电子结构等.
本文还对Fe-M-N-C基双原子催化剂面临的主要挑战和发展机遇进行了总结, 并对未来的研究方向进行了展望. 一些关键的发展方向应该得到充分的关注和发展, 包括Fe基双原子位点的精准合成、双原子位点的可靠识别、对催化机理的深入认识、Fe基催化剂在酸性环境中的稳定性以及具有最佳活性的双原子位点构型. 综上, 本文对Fe-M-N-C基双原子催化剂研究现状进行了系统的总结, 希望为未来理性设计催化剂提供一定的参考.
樊哲琛, 万浩, 余浩, 葛君杰. 用于氧还原电催化的Fe-M-N-C基双原子催化剂的研究进展[J]. 催化学报, 2023, 54: 56-87.
Zhechen Fan, Hao Wan, Hao Yu, Junjie Ge. Rational design of Fe-M-N-C based dual-atom catalysts for oxygen reduction electrocatalysis[J]. Chinese Journal of Catalysis, 2023, 54: 56-87.
Fig. 1. A timeline of development of Fe-M-N-C based DACs for ORR. (a) Reprinted with permission from Ref. [61]. Copyright 2011, American Chemical Society. (b) Reprinted with permission from Ref. [62]. Copyright 2007, American Association for the Advancement of Science. (c) Reprinted with permission from Ref. [64]. Copyright 2014, American Chemical Society. (d) Reprinted with permission from Ref. [65]. Copyright 2017, American Chemical Society. (e) Reprinted with permission from Ref. [67]. Copyright 2019, American Chemical Society. (f) Reprinted with permission from Ref. [70]. Copyright 2023, American Chemical Society.
Fig. 4. Schematic diagram of possible adsorption configurations of O2 at single-atom site and dual-atom site. Blue and purple represent Fe and M metal atoms, and red represents the adsorbed O2.
Fig. 5. (a) The two-step synthesis process of Fe2-N-C. Reprinted with permission from Ref. [66]. Copyright 2019, Elsevier. (b) The synthesis process of DACs via a macrocyclic precursor-mediated encapsulation-pyrolysis method. Reprinted with permission from Ref. [70]. Copyright 2023, American Chemical Society.
Fig. 6. (a) The fabrication process of the planar-like Fe2N6 structure supported on carbon support. Reprinted with permission from Ref. [68]. Copyright 2019, American Chemical Society. (b) Fe10 cluster with atomically dispersed Rh atom, and the formation of Rh-Fe paired atoms. Reprinted with permission from Ref. [115]. Copyright 2020, John Wiley and Son.
Fig. 7. The bottom-up synthesis procedure of dimeric Pt2/graphene catalysts. Reprinted with permission from Ref. [116]. Copyright 2017, Springer Nature.
Fig. 8. (a) The synthesis process of Mn-Fe-N/S@mC catalysts based on the self-assembly of colloidal nanocrystals. Reprinted with permission from Ref. [117]. Copyright 2017, Elsevier. (b) The preparation of Fe-N-HCM and FeCo-N-HCN. Reprinted with permission from Ref. [118]. Copyright 2021, John Wiley and Son.
Fig. 9. (a) Aberration-corrected (AC)-HAADF-STEM image of Fe2-N6-C-o, and the corresponding yellow and red patterns represent the single and bimetallic Fe pairs, respectively. (b) Statistical study of the single and dual Fe sites and the Fe-Fe distance in Fig. (e). (c) HAADF-STEM image and elemental mappings of Fe2-N6-C-o. Reprinted with permission from Ref. [120]. Copyright 2022, American Chemical Society. (d) HAADF-STEM image of Fe-N4/Pt-N4@NC. (e) Magnified HAADF-STEM images of Fe-N4/Pt-N4@NC, and the corresponding dashed rectangles represents the atomically dispersed Fe atoms and Pt atoms. (f) The average intensity profiles of Fe/Pt atoms (indicated by dashed rectangles). Reprinted with permission from Ref. [84]. Copyright 2021, John Wiley and Son. (g) Magnified HAADF-STEM images of the (Fe,Co)/CNT, showing that Fe-Co dual sites are dominant in the (Fe,Co)/CNT. (h) The EEL spectrum recorded from the red rectangle in (g), indicating that Fe, Co is coordinated with N at the atomic scale. (i) Corresponding EELS mapping images of Co, Fe and N. Reprinted with permission from Ref. [71]. Copyright 2018, RSC Publishing.
Fig. 10. (a) Fe K-edge XANES spectra of the (Fe,Co)/CNT. (b) Fourier transformed (FT) k3-weighted χ(k)-function of the EXAFS spectra for the Fe K-edge of the (Fe,Co)/CNT. (c) The corresponding Fe K-edge EXAFS fitting curves of the (Fe,Co)/CNT. (d) Proposed architecture of Fe-Co dual sites. Reprinted with permission from Ref. [71]. Copyright 2018, RSC Publishing.
Fig. 11. (a) Experimental 57Fe M?ssbauer transmission spectra measured for (Fe,Co)/N-C, and corresponding fitting results. Reprinted with permission from Ref. [65]. Copyright 2021, American Chemical Society. 57Fe M?ssbauer spectra of (b) NCAG/Fe-Cu and (c) NCAG/Fe. Reprinted with permission from Ref. [105]. Copyright 2021, John Wiley and Son.
Fig. 12. Operando XANES spectra (a) and corresponding FTs (b) of Fe K-edge EXAFS oscillations of planar-like Fe2N6 structure at different applied potentials in 0.5 mol L-1 H2SO4. Reprinted with permission from Ref. [68]. Copyright 2020, Elsevier. Fe K-edge in situ XANES and the first-derivative of XANES spectra in the left figure for FeNx/C (c,e) and FeCoNX/C (d,f). Reprinted with permission from Ref. [67]. Copyright 2021, American Chemical Society.
Fig. 13. In-situ Raman spectra with applied potentials during the ORR process in (a) alkaline and (b) acidic solutions. Reprinted with permission from Ref. [92]. Copyright 2022, Elsevier. (c) In-situ Raman characterizations of Ni66Fe34-NC in O2-saturated 0.1 mol L-1 KOH. Reprinted with permission from Ref. [76]. Copyright 2021, Elsevier.
Fig. 15. (a) HAADF-STEM images and corresponding elemental mappings for FeCo2-NPC-900. (b) LSV curves FeCox-900 in O2-saturated 0.1 mol L-1 KOH solution. (c) LSV curves for FeCox-900 in O2-saturated 0.1 mol L-1 HClO4 solution. Reprinted with permission from Ref. [149]. Copyright 2017, John Wiley and Son. (d) HAADF-STEM image of Mn-Fe-N/S@mC. (e) Theoretical model of catalyst comprising Fe-N4 and Mn-N2S2 dual-metal sites. (f) The calculated free energy pathways of ORR on Mn-Fe-N/S@mC and Fe-N/S@mC. Reprinted with permission from Ref. [76]. Copyright 2020, Elsevier. (g) Reaction between ROS and ABTS (chemical probe); and photographs showing the color change of the solution after the Fenton reaction. (h) UV-vis absorption spectra of 0.1 mol L-1 HClO4 solutions including ABTS, H2O2 and/or catalysts. (i) The detected gas generation from H2O2 solution decomposition over Fe,Ce-N-C catalysts, or Fe-N-C catalyst. Inset presents the corresponding TOF values calculated with Fe,Ce-N-C, Fe-N-C, and Ce-N-C. Reprinted with permission from Ref. [151]. Copyright 2023, Elsevier.
Catalyst | Active site | Function of another atom | Ref. |
---|---|---|---|
FeCo2-NPC-900 | FeNx+CoNx | synergistically catalyzing ORR | [ |
Fe,Mn-N/C | FeN4+MnN4 | synergistically catalyzing ORR | [ |
Mn-Fe-N/S@mC | FeN4+MnN2S2 | synergistically catalyzing ORR | [ |
Fe/Ni(1:3)-NG | FeN4+NiN4 | catalyzing OER | [ |
Ni-N4/GHSs/Fe-N4 | FeN4+NiN4 | catalyzing OER | [ |
Fe,Ce-N-C | FeN4+CeN4 | catalyzing radical scavenging reaction | [ |
Table 1 Summery of active sites and function of reported marriage-type DACs.
Catalyst | Active site | Function of another atom | Ref. |
---|---|---|---|
FeCo2-NPC-900 | FeNx+CoNx | synergistically catalyzing ORR | [ |
Fe,Mn-N/C | FeN4+MnN4 | synergistically catalyzing ORR | [ |
Mn-Fe-N/S@mC | FeN4+MnN2S2 | synergistically catalyzing ORR | [ |
Fe/Ni(1:3)-NG | FeN4+NiN4 | catalyzing OER | [ |
Ni-N4/GHSs/Fe-N4 | FeN4+NiN4 | catalyzing OER | [ |
Fe,Ce-N-C | FeN4+CeN4 | catalyzing radical scavenging reaction | [ |
Fig. 16. (a-c) The k3-weighted Fourier-transform experimental Fe K-edge EXAFS spectrum (black line) and the fitting curve (red line) of Fe2-N-C (a), Fe1-N-C (b), and Fe3-N-C (c). The insets of show the optimized structural model. (d) LT-FTIR spectra after O2 adsorption on Fe1-N-C, Fe2-N-C, and Fe3-N-C. The optimized adsorption configurations, adsorption energies (EO2) and O-O bond lengths (LO-O) for O2 molecules on Fe1-N-C (e), Fe2-N-C (f), and Fe3-N-C (g). (h) ORR polarization curves in O2-saturated 0.5 mol L-1 H2SO4 solution. (i) ORR durability tests of Fe2-N-C after 5000, 10000, and 20000 cycles at an accelerated sweep rate of 50 mV s-1 at 0.6-1.0 V. Reprinted with permission from Ref. [66]. Copyright 2019, Elsevier. (j) Fe-Fe shell length calculated from operando EXAFS spectra. Inset: deductive oxygenated intermediates adsorption state on the planar-like Fe2N6 structure. (k) Proposed ORR reaction pathways on the planar-like Fe2N6 structure. (l) ORR polarization curves of isolated FeN4, planar-like Fe2N6 structure and Fe-N nanoparticle catalysts in O2-saturated 0.5 mol L-1 H2SO4 solution. Reprinted with permission from Ref. [68]. Copyright 2020, Elsevier.
Fig. 17. (a) Illustration of proposed various structures. (b) Proposed ORR mechanism on 2L-Up sites. (c) Gibbs free energy diagrams at 1.23 V. (d) Calculated charge density differences for 2L-Up and FeN4. The charge accumulation and depletion are colored in cyan and yellow. (e) LSV curves of Fe(Zn)-N-C and reference samples measured with RRDE obtained in O2 saturated 0.1 mol L-1 HClO4. (f) The durability tests of Fe(Zn)-N-C. Reprinted with permission from Ref. [154]. Copyright 2020, John Wiley and Son.
Catalyst | Active site | Performance | Durability test ∆E1/2 (cycle number) | Ref. | |
---|---|---|---|---|---|
E1/2 (V) | Electrolyte | ||||
Fe2-N-C | Fe2N6 | 0.78 | 0.5 mol L-1 H2SO4 | 20 mV (20k) | [ |
Fe2N6 | Fe2N6 | 0.84 | 0.5 mol L-1 H2SO4 | 24 mV (10k) | [ |
Fe(Zn)-N-C | HO-FeN4-O-FeN4-OH | 0.83 | 0.1 mol L-1 HClO4 | 14 mV (10k) | [ |
Fe2@PDA-ZIF-900 | Fe2N6 | 0.816 | 0.5 mol L-1 H2SO4 | — | [ |
Table 2 Summery of active sites, activity and durability of reported homonuclear DACs.
Catalyst | Active site | Performance | Durability test ∆E1/2 (cycle number) | Ref. | |
---|---|---|---|---|---|
E1/2 (V) | Electrolyte | ||||
Fe2-N-C | Fe2N6 | 0.78 | 0.5 mol L-1 H2SO4 | 20 mV (20k) | [ |
Fe2N6 | Fe2N6 | 0.84 | 0.5 mol L-1 H2SO4 | 24 mV (10k) | [ |
Fe(Zn)-N-C | HO-FeN4-O-FeN4-OH | 0.83 | 0.1 mol L-1 HClO4 | 14 mV (10k) | [ |
Fe2@PDA-ZIF-900 | Fe2N6 | 0.816 | 0.5 mol L-1 H2SO4 | — | [ |
Fig. 18. (a) Counter plot of ηORR versus the Fe-M distance and d electrons of M. (b) The structure of FeMN6-DAC and FeMN8-DAC. (c) The spatial spin density of FeNiN6-DAC. (d) Side view of charge transfer within the system of FeNiN6-DAC. Reprinted with permission from Ref. [94]. Copyright 2023, Elsevier. (e) Linear correlation between the magnetic moment on Fe and the ORR activity of the eight configurations with two metal atoms. The atomic structures of each configuration are shown with their respective Fe-Cu interatomic distance. Reprinted with permission from Ref. [120]. Copyright 2021, American Chemical Society. The free energy diagrams of ORR and OER on mode 1 (f), model 2 (g), model 3 (h) of FeCoN6 and Fe-N-C (Co-N-C) (i) at 0 V. Reprinted with permission from Ref. [160]. Copyright 2020, Elsevier.
Fig. 19. (a) Proposed model of Fe-Co dual sites. (b) RDE polarization curves of Pt/C, Co SAs/N-C, Fe SAs/N-C, and (Fe,Co)/N-C in O2-saturated 0.1 mol L-1 HClO4. (c) DFT calculated energies of intermediates and transition states in mechanism of ORR at (Fe,Co)/N-C. Reprinted with permission from Ref. [65]. Copyright 2017, American Chemical Society. (d) Top and front views for the different adsorption models of OO* on the CuN4, CuCuN6, FeCuN6, FeN4, and FeFeN6. (e) The formation energy of OO* for five different models. (f) The Gibbs free energy diagram for ORR on different models at 0 V. Reprinted with permission from Ref. [78]. Copyright 2021, John Wiley and Son. (g) The cleavage of adsorbed OOH* on FeMnN6 site. The adsorbed OOH* in the “laying down” configuration, the transition state and the split OOH*. Reprinted with permission from Ref. [83]. Copyright 2022, John Wiley and Son.
Fig. 20. (a) The Fe K-edge EXAFS fitting curves and atomic configuration of Fe/Mn-N-C. ORR free energy diagrams for graphite, Fe-N-C, Mn-N-C, Fe/Mn-N-C (FeNx site), and Fe/Mn-N-C (MnNx site) at 0 V (b), 1.23 V (c). (d) Scheme of cascade mechanism on the FeNx site and MnNx site. Reprinted with permission from Ref. [163]. Copyright 2021, Elsevier. (e) The synthesis procedure and active sites of Fe-Zn@SNC. (f) Pathways and free energy diagrams of Fe-Zn@SNC with different Fe-Zn distances. (g) Overpotential of Fe-Zn@SNC models with different Fe-Zn distances. Barder charge of Fe-Zn@SNC models with Fe-Zn distances of 3.16 (h) and 2.46 ? (i). (j) Total charge transfer between O2* and Fe-Zn bridge site of three Fe-Zn@SNC models. (k) LSV curves in O2-saturated 0.5 mol L-1 H2SO4. (l) Stability of RDE polarization curves of Fe-Zn@SNC before and after 2000 potential cycles. Reprinted with permission from Ref. [80]. Copyright 2023, John Wiley and Son.
Fig. 21. (a) Calculating models of FeN4CuN4, FeN4FeN4, CuN4CuN4, FeN4 and CuN4. (b) ELF images of different models, blue represents the poor-electron region and red represents the rich-electron region. (c) O2 adsorption model and relative Ead. (d) PDOS images of Fe 3d in different models with the O 2p orbit. (e) Free energy diagram for the ORR with different models. (f) LSV curves for the ORR on different samples in O2-saturated 0.5 mol L-1 H2SO4 solution. Reprinted with permission from Ref. [164]. Copyright 2020, RSC Publishing. (g) O2 adsorption models of Fe-N4 and Fe-N4/Pt-N4. (h) Calculated projected density of states of Fe-N4/Pt-N4 after OOH* adsorption. (i) Calculated projected density of states of and Fe-N4/Pt-N4 after OH* adsorption. σ and π represent the bonding molecular orbitals between d orbital of Fe and p orbital of O. σ* and π* represent the antibonding molecular orbitals. Reprinted with permission from Ref. [75]. Copyright 2020, John Wiley and Son.
Fig. 22. (a) Illustration of atomic configurations of Fe-N4, Co2-N6, and Co2/Fe-N10. (b) The projected density of states (PDOS) of Fe-d orbitals in Fe-N4 and Co2/Fe-N10. (c) Free energy diagrams for Fe-N4 site in Co2/Fe-N1, Fe-N4, and Co2-N6 at 0 and 1.23 V. Reprinted with permission from Ref. [167]. Copyright 2021, John Wiley and Son. (d) Optimal configurations of single FeN4 sites in the basal plane (Fe1-1) (i) and at the nanopore (Fe1-2) (ii), and adjacent bimetal sites of Fe1/Fe1-1 (iii), Cu1/Fe1-1 (iv), Fe1/Fe1-2 (v) and Cu1/Fe1-2 (vi). (e) Magnetic moment and ΔGOH*, inset: their correlation for different models. (f) Free energy diagrams of the different models at their respective limiting potentials. (g) Fe 3d DOS of Fe1/Fe1-2 and Cu1/Fe1-2. (h) DOS of the Fe 3d orbitals in Cu1/Fe1-2. Reprinted with permission from Ref. [105]. Copyright 2022, John Wiley and Son.
Catalyst | Active site | Interatomic distance (Å) | Performance | Durability test ∆E1/2 (Cycle number) | Ref. | |
---|---|---|---|---|---|---|
E1/2 (V) | Electrolyte | |||||
FeNiN8-DAC | FeN4-NiN4 | 7.68 * | 0.84 | 0.5 mol L-1 H2SO4 | — | [ |
(Fe,Co)/N-C | FeCoN6 | 2.50 | 0.863 | 0.1 mol L-1 HClO4 | ~0 mV (50k) | [ |
f-FeCoNC900 | FeCoN6 | 2.56 | 0.81 | 0.1 mol L-1 HClO4 | — | [ |
Fe, Co SAs-PNCF | FeCoN6 | 2.30 | 0.78 | 0.1 mol L-1 HClO4 | ~0 mV (5k) | [ |
Fe-Zn@SNC | FeZnN5S | 2.98 | 0.86 | 0.5 mol L-1 H2SO4 | 25 mV (2k) | [ |
Fe/Ni-Nx/OC | FeN4-NiN4 | — | 0.84 | 0.1 mol L-1 HClO4 | ~0 mV (5k) | [ |
Co2/Fe-N@CHC | FeN4-Co2N6 | 2.41 (Co-Co) | 0.812 | 0.1 mol L-1 HClO4 | 9 mV (5k) | [ |
Fe,Mn/N-C | FeMnN6 | 2.5 | 0.804 | 0.1 mol L-1 HClO4 | 18 mV (8k) | [ |
FeCe-SAD/HPNC | FeN4-CeN6 | 3.77 | 0.81 | 0.1 mol L-1 HClO4 | — | [ |
Fe/Zn-N-C | FeZnN6 | 2.36 | 0.808 | 0.1 mol L-1 HClO4 | 28 mV (5k) | [ |
FeCoN5P1/C | FeCoN5P | 2.2 | 0.771 | 0.5 mol L-1 H2SO4 | — | [ |
FeCoNx/C | FeCoN5-OH | 2.15 | 0.86 | 0.1 mol L-1 HClO4 | 13 mV (5k) | [ |
Table 3 Summery of active sites, activity and durability of reported heteronuclear. DACs.
Catalyst | Active site | Interatomic distance (Å) | Performance | Durability test ∆E1/2 (Cycle number) | Ref. | |
---|---|---|---|---|---|---|
E1/2 (V) | Electrolyte | |||||
FeNiN8-DAC | FeN4-NiN4 | 7.68 * | 0.84 | 0.5 mol L-1 H2SO4 | — | [ |
(Fe,Co)/N-C | FeCoN6 | 2.50 | 0.863 | 0.1 mol L-1 HClO4 | ~0 mV (50k) | [ |
f-FeCoNC900 | FeCoN6 | 2.56 | 0.81 | 0.1 mol L-1 HClO4 | — | [ |
Fe, Co SAs-PNCF | FeCoN6 | 2.30 | 0.78 | 0.1 mol L-1 HClO4 | ~0 mV (5k) | [ |
Fe-Zn@SNC | FeZnN5S | 2.98 | 0.86 | 0.5 mol L-1 H2SO4 | 25 mV (2k) | [ |
Fe/Ni-Nx/OC | FeN4-NiN4 | — | 0.84 | 0.1 mol L-1 HClO4 | ~0 mV (5k) | [ |
Co2/Fe-N@CHC | FeN4-Co2N6 | 2.41 (Co-Co) | 0.812 | 0.1 mol L-1 HClO4 | 9 mV (5k) | [ |
Fe,Mn/N-C | FeMnN6 | 2.5 | 0.804 | 0.1 mol L-1 HClO4 | 18 mV (8k) | [ |
FeCe-SAD/HPNC | FeN4-CeN6 | 3.77 | 0.81 | 0.1 mol L-1 HClO4 | — | [ |
Fe/Zn-N-C | FeZnN6 | 2.36 | 0.808 | 0.1 mol L-1 HClO4 | 28 mV (5k) | [ |
FeCoN5P1/C | FeCoN5P | 2.2 | 0.771 | 0.5 mol L-1 H2SO4 | — | [ |
FeCoNx/C | FeCoN5-OH | 2.15 | 0.86 | 0.1 mol L-1 HClO4 | 13 mV (5k) | [ |
Fig. 23. (a) H2O2 reduction polarization curves for Fe DACs and reference samples. Gibbs free energy diagram of the Fenton-like (b) and hydrogen peroxide reduction reaction (HPRR) (c) processes. Reprinted with permission from Ref. [70]. Copyright 2023, American Chemical Society. Calculated free energies required for two-step protonation: ΔG1*H (d) and ΔG2*H (e) for Fe/M-N-C. (f) Protonation diagram of Fe/Zn-N-C. (g) Schematic illustration of the protonation process. Reprinted with permission from Ref. [171]. Copyright 2022, RSC publishing.
Fig. 24. (a) Geometric structure of M-N-C SACs. Reprinted with permission from Ref. [10]. Copyright 2021, John Wiley and Son. (b) Illustration of the FeCoN6 site with P doping in FeCo-NPC. (c) Free energy diagram for the OER and ORR processes of the FeCo-NPC, FeCo-NC, Fe-NPC and Co-NPC at 1.23 V. Reprinted with permission from Ref. [176]. Copyright 2023, Elsevier. (d) Schematic of FeCoN5-OH site. (e) Gibbs free energy diagrams at 1.23 V on CoN4, FeN4, and FeCoN5-OH sites. (f) Proposed ORR mechanism on the FeCoN5-OH site. Reprinted with permission from Ref. [67]. Copyright 2019, American Chemical Society.
|
[1] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[2] | 赵磊, 张震, 朱昭昭, 李平波, 蒋金霞, 杨婷婷, 熊佩, 安旭光, 牛晓滨, 齐学强, 陈俊松, 吴睿. 缺陷氮掺杂碳耦合Co-N5单原子位点用于高效锌-空气电池[J]. 催化学报, 2023, 51(8): 216-224. |
[3] | 贡立圆, 王颖, 刘杰, 王显, 李阳, 侯帅, 武志坚, 金钊, 刘长鹏, 邢巍, 葛君杰. 重塑位于火山曲线右支的弱吸附金属单原子位点的配位环境及电子结构[J]. 催化学报, 2023, 50(7): 352-360. |
[4] | 张光颖, 刘旭, 张欣欣, 梁志坚, 邢耕宇, 蔡斌, 沈迪, 王蕾, 付宏刚. P修饰提高Fe-N-C的氧反应活性用于高稳定的锌-空气电池[J]. 催化学报, 2023, 49(6): 141-151. |
[5] | 韩璟怡, 管景奇. 通过限域-热解策略可控合成双原子催化剂[J]. 催化学报, 2023, 49(6): 1-4. |
[6] | 姜润, 乔泽龙, 许昊翔, 曹达鹏. 用于氧还原反应的Fe-N-C单原子催化剂的缺陷工程[J]. 催化学报, 2023, 48(5): 224-234. |
[7] | 张文静, 李静, 魏子栋. 碳基氧还原电催化剂: 机理研究和多孔结构[J]. 催化学报, 2023, 48(5): 15-31. |
[8] | 詹麒尼, 帅婷玉, 徐慧民, 黄陈金, 张志杰, 李高仁. 单原子催化剂的合成及其在电化学能量转换中的应用[J]. 催化学报, 2023, 47(4): 32-66. |
[9] | 韩璟怡, 管景奇. 用于纳米催化肿瘤治疗的异核双金属原子催化剂[J]. 催化学报, 2023, 47(4): 1-31. |
[10] | 唐甜蜜, 王寅, 韩憬怡, 张巧巧, 白雪, 牛效迪, 王振旅, 管景奇. 用于氧还原反应的双原子钴-铁催化剂[J]. 催化学报, 2023, 46(3): 48-55. |
[11] | 吴则星, 高玉肖, 王子璇, 肖卫平, 王新萍, 李彬, 李镇江, 刘晓斌, 马天翼, 王磊. 表面富集的超小铂纳米颗粒耦合缺陷磷化钴用于高效的电催化水分解和柔性锌空气电池[J]. 催化学报, 2023, 46(3): 36-47. |
[12] | 刘轩, 梁嘉顺, 李箐. 燃料电池金属间Pt-M合金氧还原催化剂的设计原理及合成方法[J]. 催化学报, 2023, 45(2): 17-26. |
[13] | Diab khalafallah, 张运祥, 王昊, Jong-Min Lee, 张勤芳. 联产混合电解水策略实现节能电化学制氢的最新进展[J]. 催化学报, 2023, 55(12): 44-115. |
[14] | 夏苏为, 周其兴, 孙若栩, 陈立章, 张明义, 庞欢, 徐林, 杨军, 唐亚文. 在N掺杂碳纳米管/纳米线耦合超结构中原位固载CoNi纳米颗粒制备莫特-肖特基催化剂并用于高效电催化氧还原反应[J]. 催化学报, 2023, 54(11): 278-289. |
[15] | 程瑶佳, 宋昊强, 于镜坤, 常江伟, Geoffrey I. N. Waterhouse, 唐智勇, 杨柏, 卢思宇. 碳点衍生的碳纳米花负载钴单原子和纳米颗粒用于高效的氧还原反应[J]. 催化学报, 2022, 43(9): 2443-2452. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||