催化学报 ›› 2023, Vol. 54: 220-228.DOI: 10.1016/S1872-2067(23)64534-6

• 论文 • 上一篇    下一篇

ZrO2修饰均匀氮掺杂氧化物MgTa2O6-xNx以提升其光催化分解水性能

王宁宁a, 王硕a, 李灿a, 李晨阳a, 刘春江a, 陈闪山a,*(), 章福祥b,*()   

  1. a南开大学材料科学与工程学院, 国家新材料研究院, 天津300350
    b中国科学院大连化学物理研究所, 催化基础国家重点实验室, 洁净能源国家实验室, 能源材料化学协同创新中心, 辽宁大连116023
  • 收稿日期:2023-08-26 接受日期:2023-10-09 出版日期:2023-11-18 发布日期:2023-11-15
  • 通讯作者: *电子邮箱: sschen@nankai.edu.cn (陈闪山), fxzhang@dicp.ac.cn (章福祥).
  • 基金资助:
    国家自然科学基金(22272082);国家自然科学基金(21925206);中央高校基本科研业务费, 南开大学(63213098);河北省科学技术厅基金(226Z4307G)

ZrO2 modification of homogeneous nitrogen-doped oxide MgTa2O6-xNx for promoted photocatalytic water splitting

Ningning Wanga, Shuo Wanga, Can Lia, Chenyang Lia, Chunjiang Liua, Shanshan Chena,*(), Fuxiang Zhangb,*()   

  1. aSchool of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
    bState Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, Liaoning, China
  • Received:2023-08-26 Accepted:2023-10-09 Online:2023-11-18 Published:2023-11-15
  • Contact: *E-mail: sschen@nankai.edu.cn (S. Chen); fxzhang@dicp.ac.cn (F. Zhang).
  • Supported by:
    National Natural Science Foundation of China(22272082);National Natural Science Foundation of China(21925206);Fundamental Research Funds for the Central Universities, Nankai University(63213098);Hebei Provincial Department of Science and Technology(226Z4307G)

摘要:

光催化分解水被认为是非常有前景的制氢技术之一, 该技术不依赖传统化石燃料, 且避免了温室气体CO2的排放. 提升太阳能光催化分解水效率的一个重要前提是开发高效的窄带隙半导体光催化材料. 近年来, 多种窄带隙半导体, 如掺杂氧化物、氮(氧)化物、硫(氧)化物、卤氧化物和卤氮化物等, 被开发并应用于可见光光催化分解水反应体系. 其中, 均匀氮掺杂氧化物是一类典型的窄带隙半导体, 主要包含氮掺杂层状或者隧道状氧化物. 前期本课题组开发了一系列均匀氮掺杂氧化物并用于可见光光催化分解水体系. 通过将MgTa2O6-xNx和TaON构筑异质结后, 最终组装出的Z机制全分解水体系的表观量子效率可达12.3% (420 nm). 与异质结相比, 氮掺杂氧化物本身仍存在电荷分离较差的问题, 如何改善该类材料的电荷分离是当前面临的重要挑战之一. 表面修饰被认为是一种可以通过减少表面复合中心从而提升电荷分离效率的策略. 例如, 通过在TaON和Ta3N5半导体表面分别修饰ZrO2和MgO可以显著减少材料本身的表面缺陷从而提高光催化分解水性能.

考虑到氮掺杂氧化物和氮(氧)化物具有相似的组成和性质, 本文以氮掺杂隧道状氧化物MgTa2O6-xNx为模型材料, 验证了ZrO2修饰策略也可有效改善均匀氮掺杂氧化物类半导体材料的电荷分离, 提升光催化分解水性能. 首先, 对MgTa2O6进行表面修饰, 得到ZrO2/MgTa2O6前驱体, 再经过掺氮处理后制得ZrO2/MgTa2O6-xNx. 结果表明, Zr物种以粒径为20 nm左右的ZrO2纳米颗粒形式存在, 对MgTa2O6-xNx晶体结构和形貌等几乎无影响. 紫外可见漫反射光谱和X射线光电子能谱结果表明, ZrO2修饰能在一定程度上抑制MgTa2O6-xNx材料在氮掺杂过程中低价钽物种的生成. 将系列样品分别担载产氢或产氧助催化剂后, ZrO2/MgTa2O6-xNx样品的光催化水还原或水氧化活性均比MgTa2O6-xNx样品有明显提升. 其中, Pt-ZrO2/MgTa2O6-xNx (Zr/Ta = 0.10)光催化剂的产氢活性约是Pt-MgTa2O6-xNx活性的4.5倍, 相应的表观量子效率高于大多数已报道的其它均匀氮掺杂光催化剂的结果, 证明了ZrO2修饰策略在改善电荷分离和提高光催化分解水性能方面的有效性. 这可能是因为, ZrO2修饰后MgTa2O6-xNx表面会产生Zr-O-Ta键, 在一定程度上抑制了低价钽物种(光生载流子复合中心)的生成, 进而提升了MgTa2O6-xNx电荷分离效率.

综上, 本文拓展了ZrO2修饰策略在宽光谱响应的均匀氮掺杂氧化物类材料方面的应用范围, 为开发高效太阳能光催化转化体系提供了一种新思路.

关键词: MgTa2O6-xNx, 氮掺杂, 光催化剂, 水分解, ZrO2修饰

Abstract:

Homogeneous nitrogen-doped oxides are of wide visible light utilization for promising photocatalytic water splitting to produce hydrogen, but currently the poor charge separation severely limits their photocatalytic performances. In this work, a homogeneous nitrogen-doped tunneled oxide of MgTa2O6-xNx with an absorption edge of 570 nm was selected as a prototype to investigate the influence of ZrO2 modification on the charge separation as well as photocatalytic performance. It is interesting to observe that the formation of the reduced tantalum species, regarded as recombination centers, in the MgTa2O6-xNx sample could be effectively inhibited via the surface passivation with ZrO2 nanoparticles, based on which the photocatalytic water reduction and oxidation half-reaction activities could be remarkably promoted. Together with modification of the deposited Pt cocatalyst, the optimized H2 evolution rate over Pt-ZrO2/MgTa2O6-xNx (Zr/Ta = 0.10) photocatalyst was almost 4.5 times as high as that of the pristine Pt-MgTa2O6-xNx sample free of ZrO2 modification, whose apparent quantum yield at 420 nm (± 15 nm) achieved herein was superior to those of other reported homogeneous nitrogen-doped photocatalysts. The improved charge separation probably attributes to the introduction of Zr-O-Ta bond after ZrO2 modification, which is helpful to stabilize the tantalum species at more cationic state and inhibit the formation of the reduced tantalum species. This work extends the application territory of ZrO2 modification to the homogeneous nitrogen-doped oxide photocatalysts, and demonstrates its feasibility and effectiveness for remarkably enhanced photocatalytic water splitting performance.

Key words: MgTa2O6-xNx, Nitrogen doping, Photocatalyst, Water splitting, ZrO2 modification