催化学报 ›› 2023, Vol. 54: 161-177.DOI: 10.1016/S1872-2067(23)64537-1
收稿日期:
2023-06-12
接受日期:
2023-09-27
出版日期:
2023-11-18
发布日期:
2023-11-15
通讯作者:
*电子信箱: 基金资助:
Yingzhen Zhanga, Jianying Huanga,b,*(), Yuekun Laia,b,*(
)
Received:
2023-06-12
Accepted:
2023-09-27
Online:
2023-11-18
Published:
2023-11-15
Contact:
*E-mail: About author:
Jianying Huang received PhD degree in 2007 from College of Chemistry and Chemical Engineering, Xiamen University. During 2007-2011, she is an assistant professor at Fujian Institute of Research on the Structure of Matter. Later, she acted as visiting scholar at Muenster University. From 2013 to 2018, she was an associate professor at School of Textile and Clothing Engineering in Soochow University. Currently, she is a full professor at College of Chemical Engineering at Fuzhou University, and selected as the 2019-2022 Highly Cited Researchers. Her research interests focus on bio-inspired surfaces with special wettability, advanced materials for energy and environmental applications.Supported by:
摘要:
随着经济的发展, 当今社会对能源的需求不断增加. 然而, 传统的化石燃料, 如煤和石油, 虽然能够提供大量的能源, 但其资源有限, 不可再生, 并且燃烧产物对环境有害, 不符合绿色低碳的发展理念, 亟需开发新型、高效的清洁能源. 氨(NH3)因具有氢含量高、燃烧产物(完全燃烧时产物为N2和H2O)无害、可规模化生产、压缩性好、易于储存和运输等优点, 被认为是直接氨燃料电池(DAFCs)的理想候选燃料. 同时, 氨也是常见的含氮污染物, 广泛存在于人类生产和工农业活动中. 因此, 氨氧化反应(AOR)在清洁能源生产和含氨废水处理领域都起着重要作用.
本文首先系统总结了AOR在不同领域的研究进展, 强调了其在清洁能源领域(如DAFCs)的巨大应用潜力, 突出了AOR与水电解反应中的阴极氢析出过程耦合制取氢气在能源转化领域的研究价值, 以及AOR在含氨废水处理领域的重要性. 然后, 讨论了AOR机制: AOR反应过程中存在竞争, 并可生成多种含氮产物(如N2, NO, NO2, NO2-和NO3-等), 进而影响产物的选择性和反应效率等. 再后, 讨论了原位表征技术(如采用原位拉曼光谱对催化剂重构行为跟踪和采用原位傅里叶变换红外光谱对反应中间体实时监测)和构建理论计算模型的重要性, 这些方法为揭示AOR机制和反应路径提供有力的支持. 同时, 对AOR催化剂的设计策略和反应条件的筛选提出建议, 如反应环境pH值会影响活性位点的质子化状态, 从而改变吸附行为, 影响催化性能. 还探讨了AOR过程耦合电解水氢析反应对低能耗、高效率制取氢气的意义, 并概述了在含氨废水处理中提高氮气产物选择性的必要性. 最后, 讨论了AOR研究中面临的挑战和可采用的策略, 包括进一步增加活性位点的暴露、增强催化活性、精准识别活性位点、最大程度地利用催化中心、提高催化剂抗中毒能力、提高目标产物的选择性以及提高催化剂使用寿命等.
综上, 本文系统地总结了AOR的研究进展、反应机制以及未来的发展策略等, 为进一步推动AOR在洁净能源和环境保护领域的应用, 为进一步开发更绿色环保的能源体系以及高效的污水处理方法提供新思路.
张颖贞, 黄剑莹, 赖跃坤. 氨氧化技术在清洁能源开发和污水净化中的研究进展[J]. 催化学报, 2023, 54: 161-177.
Yingzhen Zhang, Jianying Huang, Yuekun Lai. Recent advances of ammoxidation in clean energy exploitation and sewage purification: A mini review[J]. Chinese Journal of Catalysis, 2023, 54: 161-177.
Fig. 1. (a) Comparison of volumetric energy densities of different energy sources. Reprinted with permission from Ref. [5]. Copyright 2022, Elsevier. (b) Schematic of a DAFC. Reprinted with permission from Ref. [19]. Copyright 2022, Elsevier. (c) Diagram of AOR coupled with HER. (d) The pathways of AOR in acidic (pH = 0) and basic (pH = 14) conditions. Reprinted with permission from Ref. [17]. Copyright 2023, American Chemical Society.
Fig. 2. The typical development process and future challenges of AOR. Reprinted with permission from Ref. [33]. Copyright 2021, John Wiley and Sons. Reprinted with permission from Ref. [34]. Copyright 2023, Springer Nature.
Fig. 4. (a) Estimated AOR onset potential for close-packed facets of transition metals. The colors indicate the determining steps for each metal. (b) Activity as predicted by Sabatier analysis for both mechanisms at 0 V vs. RHE. Reprinted with permission from Ref. [36]. Copyright 2015, American Chemical Society. Free energy diagram of AOR on Pt(111) (c) and Cu(111) (d) at 0 V vs. RHE. All energies are given with adsorbates at infinite separation, 1/9 ML coverage. Zero energy corresponds to N2 (g). Reprinted with permission from Ref. [36]. Copyright 2015, American Chemical Society.
Fig. 5. (a) Adsorption energy of different AOR intermediates on Pt3-xIrx. Reprinted with permission from Ref. [37]. Copyright 2018, Elsevier. (b) AOR reaction diagram on PtIrNi/SiO2-CNT-COOH. Gibbs free energy (c), corresponding reaction models (d), and d-orbital densities (e) on Pt(100), Pt3Ir(100) and Pt3IrNi(100). Reprinted with permission from Ref. [38]. Copyright 2020, American Chemical Society. (f) Possible products of AOR. (g) Binding energies of the reactants, intermediates, and products on different metals. Reprinted with permission from Ref. [39]. Copyright 2022, Royal Society of Chemistry.
Fig. 6. (a) Binding energies of Fe7, Fe7Ni, Fe7Mo, and Fe7Co clusters, from left to right. (b) Electron cloud density of NH3 and Fe7, Fe6Ni(l and t), Fe6Mo(l and t), and Fe6Co(l and t)clusters. (c) Relationship between d-band center and ammonia adsorption energy. (d) Gibbs energy free and (e) intermediates geometries of NH3 on Fe6Mo(t). Reprinted with permission from Ref. [40]. Copyright 2022, Elsevier.
Fig. 7. (a) In-situ FTIR spectra of AOR on Pt surface at different potentials. (b) Potential dependence of AOR current density at the Pt electrode and the intensity of corresponding FTIR spectra. (c) AOR pathways on Pt surface. Reprinted with permission from Ref. [46]. Copyright 2015, American Chemical Society.
Fig. 8. (a) In-situ UV-Vis spectra of AgNPs and Agn0 during thermal catalysis. (b,c) In-situ FTIR spectra of the AOR process performed at different temperatures. (d) Selectivity of AOR. Reprinted with permission from Ref. [47]. Copyright 2021, American Chemical Society.
Fig. 9. (a,b) Cyclic voltammetry (CV) and power density curves of DAFC in KOH solutions with various concentrations. Reprinted with permission from Ref. [22]. Copyright 2019, Elsevier. CV curves (c), electrochemical impedance spectroscopy (EIS) data (d), and AOR activity (e) of PtIrZn2/CeO2-ZIF-8 at various KOH concentrations. (f) Electrochemical performance curves of DAFCs with PtIrZn2/SiO2-CNT-COOH and other contrast electrodes. Reprinted with permission from Ref. [49]. Copyright 2021, RSC Publishing. (g) CV curves and (h) Ea of NiCu@NiCuOOH and NiCu, in 2.0 mol L-1 NaOH containing 0.4 mol L-1 NH4Cl. (i) Electrochemical performance curves in different concentrations of NaOH with 0.4 mol L-1 NH4Cl. Reprinted with permission from Ref. [50]. Copyright 2022, Elsevier.
Fig. 10. (a) Electrochemical performance curves of PtRu/C as anode and Pd/C as cathode, under 25, 40, 60, 80, and 95 °C, respectively. Reprinted with permission from Ref. [51]. Copyright 2022, American Chemical Society. (b) PtIr as anode and LaCr0.25Fe0.25Co0.5O3-δ (LCFCO) as cathode, at 20, 40, 60, 80, and 100 °C, respectively. (c) PtIr as anode, and LCFCO as cathode, compared with Pt/C as cathode, at 70 and 80 °C, respectively. Reprinted with permission from Ref. [52]. Copyright 2022, Elsevier. (d) CV curves of PtIr/C catalyst in 1.0 mol L-1 KOH saturated with Ar-NH3 vapor, recorded at a scan rate of 20 mV s-1, and 25, 40, 50, and 60 °C, respectively. Reprinted with permission from Ref. [53]. Copyright 2018, The Electrochemical Society.
Fig. 11. Preparation process diagram of the PtPb nanocatalysts (a), their particle size distribution (b), and TEM image (c). (d) CV curves of PtPb/C in 1.0 mol L-1 KOH with or without 0.1 mol L-1 NH3·H2O recorded at a scan rate of 10 mV s-1. (e) CV curves of PtPb/C in 1.0 mol L-1 KOH with 0.1 mol L-1 NH3·H2O. (f) Chronopotentiometry curves of PtPb/C and Pt/C at 50 mA mg-1Pt. Reprinted with permission from Ref. [71]. Copyright 2023, American Chemical Society.
Fig. 12. CV curves of Ni/MnO2 (a), Cu/MnO2 (b), and NiCu/MnO2 (c) in 0.5 mol L-1 NaOH with or without 55 mmol L-1 NH4Cl. (d) CA (chronoampetometry) curves for Ni/MnO2, Cu/MnO2, and NiCu/MnO2 at +0.6 V vs. Hg/HgO. (e) Faradic efficiencies obtained with NiCu/MnO2 at a constant potential from +0.6 to +1.0 V in a 0.5 mol L-1 NaOH electrolyte containing 55 mmol L-1 NH4Cl. Reprinted with permission from Ref. [79]. Copyright 2021, American Chemical Society. (f) The energy barriers of the different reaction steps in Ni-Cu-Fe-OOH and Ni-Cu-OOH, inset demonstrates the energy barriers for the divergence steps of the G-M mechanism and the O-S mechanism in the Ni-Cu-Fe-OOH system. (g) CV curves of a-NiCuFe and a-NiCu in 0.5 mol L-1 NaOH with or without 55 mmol L-1 NH4Cl. (h) Time-dependent UV-Vis spectra of an NH3-containing solution tested for AOR. (i) NH3 removal efficiency and Faradaic efficiency of a-NiCuFe at different applied potentials. Reprinted with permission from Ref. [81]. Copyright 2021, John Wiley and Sons.
Fig. 13. (a) The time-dependent concentration profiles of NH4+, NO2-, and NO3- over time, at an applied current density of 30 mA cm-2. (b) XPS spectra of NiO-TiO2 before and after reaction, indicating changes in the material's composition and surface chemistry. Reprinted with permission from Ref. [27]. Copyright 2020, Elsevier. (c,d) The correlation between pH values and the effect of pH on nitrate generation of N2 and NO3- at C0(NH3) 10 mg L-1. Reprinted with permission from Ref. [82]. Copyright 2021, Elsevier. (e) Removal efficiency and selectivity on PtCu/G electrodes by different applied current density (CD) and C0 of NH3. (f) Reaction diagram of AOR on metal oxides. Reprinted with permission from Ref. [26]. Copyright 2022, American Chemical Society.
Fig. 14. Free energy diagrams for the conversion of NH3 to NO3-, via the O-S mechanism (a) and the G-M mechanism (b). (c) Representation of the lowest energy configurations for AOR intermediates. Reprinted with permission from Ref. [86]. Copyright 2021, John Wiley and Sons.
Material | Preparation | Electrolyte | Method | j (mA cm-2) | Field | Ref. |
---|---|---|---|---|---|---|
Ni(OH)2 | sol-gel method | 0.1 mol L-1 NaOH + 0.2 mol L-1 NH3 | EC | 70 | Purify Sewage | [ |
NiO/TiO2 | solution combustion | 0.1 mol L-1 NaNO3 + 0.2 mol L-1 NH4OH | EC | 2 | Purify Sewage | [ |
MgO/Co3O4 | Co-precipitation | 1.0 mol L-1 NaOH + 30 ppm NH4Cl | COA | NA | Purify Sewage | [ |
PtIrNi1/SiO2-CNT-COOH | sonochemical-assistance | 1.0 mol L-1 KOH + 0.1 mol L-1 NH3 | EC | 120 A g-1 | AOR | [ |
PtIrZn/CeO2-ZIF-8 | sonochemical-assistance | 1.0 mol L-1 KOH + 0.1 mol L-1 NH3 | EC | 44 A g-1 | DAFC | [ |
NiCu@NiCuOOH | electrooxidation | 2.0 mol L-1 NaOH + 0.4 mol L-1 NH4Cl | EC | 100 | DAFC | [ |
PtRu/C | commercial | 3.0 mol L-1 KOH + 3.0 mol L-1 NH3 | EC | NA | DAFC | [ |
LaCr0.25Fe0.25Co0.5O3-δ | physically mix | 1.0 mol L-1 KOH + 7.0 mol L-1 NH3 | EC | NA | DAFC | [ |
PtPb/C | solvothermal | 1.0 mol L-1 KOH + 0.1 mol L-1 NH3 | EC | 191.2 | AOR-H2 | [ |
TiO/Ti foil | calcined | 0.5 mol L-1 NaOH + 0.1 mol L-1 NH3 | EC | 0.06 | AOR-H2 or DAFC | [ |
Ni2P/NF | hydrothermal and annealed | 0.1 mol L-1 KOH + 1000 ppm NH3 | EC | 13 | Purify Sewage | [ |
Ni1Cu3-S-T/CP | hydrothermal and annealed | 1.0 mol L-1 NaOH + 0.2 mol L-1 NH4Cl | EC | 130 | Purify Sewage | [ |
NiCu/MnO2 | electrodeposition | 0.5 mol L-1 NaOH + 55 mmol L-1 NH4Cl | EC | 30 | Purify Sewage | [ |
NiCuFe | electrodeposition | 0.5 mol L-1 NaOH + 55 mmol L-1 NH4Cl | EC | 60 | Purify Sewage | [ |
NiCu/CP | electrodeposition | 0.5 mol L-1 NaOH + 55 mmol L-1 NH4Cl | EC | 52 | AOR | [ |
Ni(OH)2/SnO2 | hydrothermal and annealed | 0.5 mol L-1 K2SO4 + 10 mmol L-1 NH3 | EC | 4.5 | Purify Sewage | [ |
Au@Pt NPs | seed-mediated growth method | 1.0 mol L-1 NaOH + 0.05 mol L-1 NH3 | PEC | 1.1 | AOR | [ |
FePi/Fe2O3 | hydrothermal and annealed | 0.1 mol L-1 NaOH + 500 ppm NH3 | PEC | 1.2 | Purify sewage | [ |
SL C3N4 | annealed | 1.5 mg L-1 NH3 | PC | NA | Purify sewage | [ |
Table 1 Comparative analysis of AOR performance among Ni-based, Cu-based, and other metal catalysts.
Material | Preparation | Electrolyte | Method | j (mA cm-2) | Field | Ref. |
---|---|---|---|---|---|---|
Ni(OH)2 | sol-gel method | 0.1 mol L-1 NaOH + 0.2 mol L-1 NH3 | EC | 70 | Purify Sewage | [ |
NiO/TiO2 | solution combustion | 0.1 mol L-1 NaNO3 + 0.2 mol L-1 NH4OH | EC | 2 | Purify Sewage | [ |
MgO/Co3O4 | Co-precipitation | 1.0 mol L-1 NaOH + 30 ppm NH4Cl | COA | NA | Purify Sewage | [ |
PtIrNi1/SiO2-CNT-COOH | sonochemical-assistance | 1.0 mol L-1 KOH + 0.1 mol L-1 NH3 | EC | 120 A g-1 | AOR | [ |
PtIrZn/CeO2-ZIF-8 | sonochemical-assistance | 1.0 mol L-1 KOH + 0.1 mol L-1 NH3 | EC | 44 A g-1 | DAFC | [ |
NiCu@NiCuOOH | electrooxidation | 2.0 mol L-1 NaOH + 0.4 mol L-1 NH4Cl | EC | 100 | DAFC | [ |
PtRu/C | commercial | 3.0 mol L-1 KOH + 3.0 mol L-1 NH3 | EC | NA | DAFC | [ |
LaCr0.25Fe0.25Co0.5O3-δ | physically mix | 1.0 mol L-1 KOH + 7.0 mol L-1 NH3 | EC | NA | DAFC | [ |
PtPb/C | solvothermal | 1.0 mol L-1 KOH + 0.1 mol L-1 NH3 | EC | 191.2 | AOR-H2 | [ |
TiO/Ti foil | calcined | 0.5 mol L-1 NaOH + 0.1 mol L-1 NH3 | EC | 0.06 | AOR-H2 or DAFC | [ |
Ni2P/NF | hydrothermal and annealed | 0.1 mol L-1 KOH + 1000 ppm NH3 | EC | 13 | Purify Sewage | [ |
Ni1Cu3-S-T/CP | hydrothermal and annealed | 1.0 mol L-1 NaOH + 0.2 mol L-1 NH4Cl | EC | 130 | Purify Sewage | [ |
NiCu/MnO2 | electrodeposition | 0.5 mol L-1 NaOH + 55 mmol L-1 NH4Cl | EC | 30 | Purify Sewage | [ |
NiCuFe | electrodeposition | 0.5 mol L-1 NaOH + 55 mmol L-1 NH4Cl | EC | 60 | Purify Sewage | [ |
NiCu/CP | electrodeposition | 0.5 mol L-1 NaOH + 55 mmol L-1 NH4Cl | EC | 52 | AOR | [ |
Ni(OH)2/SnO2 | hydrothermal and annealed | 0.5 mol L-1 K2SO4 + 10 mmol L-1 NH3 | EC | 4.5 | Purify Sewage | [ |
Au@Pt NPs | seed-mediated growth method | 1.0 mol L-1 NaOH + 0.05 mol L-1 NH3 | PEC | 1.1 | AOR | [ |
FePi/Fe2O3 | hydrothermal and annealed | 0.1 mol L-1 NaOH + 500 ppm NH3 | PEC | 1.2 | Purify sewage | [ |
SL C3N4 | annealed | 1.5 mg L-1 NH3 | PC | NA | Purify sewage | [ |
Fig. 15. Exploring catalyst design ideas, real-time catalyst monitoring in electrochemical processes, innovative approaches for detecting AOR reaction intermediates, and the multidisciplinary research significance of AOR across various fields.
|
[1] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[2] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[3] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[4] | 洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52(9): 50-78. |
[5] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
[6] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
[7] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[8] | 刘海峰, 黄祥, 陈加藏. 电子态调控促进氢气无损耗纯化中CO的光致富集和氧化[J]. 催化学报, 2023, 51(8): 49-54. |
[9] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[10] | 王元男, 王立娜, 张可新, 徐靖尧, 武倩楠, 谢周兵, 安伟, 梁宵, 邹晓新. 钙钛矿氧化物在水裂解反应中的电催化研究[J]. 催化学报, 2023, 50(7): 109-125. |
[11] | 周纳, 王家志, 张宁, 王志, 王恒国, 黄岗, 鲍迪, 钟海霞, 张新波. 富含缺陷的Cu@CuTCNQ复合材料增强电催化硝酸盐还原成氨[J]. 催化学报, 2023, 50(7): 324-333. |
[12] | 李轩, 蒋兴星, 孔艳, 孙建桔, 胡琪, 柴晓燕, 杨恒攀, 何传新. GaN/In2O3的界面工程用于高效电催化CO2还原制备甲酸[J]. 催化学报, 2023, 50(7): 314-323. |
[13] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. 用于电化学能量转换反应的非贵金属单原子催化剂[J]. 催化学报, 2023, 50(7): 195-214. |
[14] | 牛青, 米林华, 陈玮, 李秋军, 钟升红, 于岩, 李留义. 基于共价有机框架的单位点光(电)催化材料的研究进展[J]. 催化学报, 2023, 50(7): 45-82. |
[15] | 欧阳玲, 梁杰, 罗永嵩, 郑冬冬, 孙圣钧, 刘倩, Mohamed S. Hamdy, 孙旭平, 应斌武. 电催化合成氨的研究进展[J]. 催化学报, 2023, 50(7): 6-44. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 99
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 237
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||