催化学报 ›› 2023, Vol. 54: 137-160.DOI: 10.1016/S1872-2067(23)64542-5
收稿日期:
2023-08-20
接受日期:
2023-09-27
出版日期:
2023-11-18
发布日期:
2023-11-15
通讯作者:
*电子信箱: 基金资助:
Chao Wua, Kangle Lva, Xin Lib,*(), Qin Lia,*()
Received:
2023-08-20
Accepted:
2023-09-27
Online:
2023-11-18
Published:
2023-11-15
Contact:
*E-mail: About author:
Xin Li (South China Agricultural University) received his B.S. and Ph.D. degrees in chemical engineering from Zhengzhou University in 2002 and the South China University of Technology in 2007, respectively. Then, he joined the South China Agricultural University as a faculty staff member, and became a professor in 2017. During 2012 and 2019, he worked as a visiting scholar at the Electrochemistry Center, the University of Texas at Austin, and the Department of Chemistry, the University of Utah, respectively. His research interests include photocatalysis, photoelectrochemistry, adsorption, biomass engineering and related materials, and device development (see Supported by:
摘要:
在低碳经济背景下, 开发以氢能为代表的清洁可再生能源至关重要. 利用太阳能驱动半导体进行光催化分解水, 是未来可持续制取氢气的有效方法之一. 然而, 光催化制氢技术产业化受限于半导体表面光生载流子复合效率高和量子效率低. 解决上述问题的办法是在半导体中引入双元助催化剂, 这不仅可以促使三相界面的形成, 促进界面电荷的有效转移, 而且不同种类的双助催化剂可以为半导体提供各自的积极作用, 协同提高光催化产氢效率和稳定性. 因此, 需要密切关注双助催化剂的开发, 以建立一个集优异的光活性和光稳定性于一体的光催化产氢体系.
本文系统地介绍了光催化产氢双助催化剂的类别、优势、合成方法和设计策略. 首先, 双助催化剂被分为双还原型(Red-Red)和还原-氧化型(Red-Ox)两类, 详细概述了在光催化产氢领域中还原型和氧化型助催化剂相互匹配后形成的双助催化剂的实例及其协同效应. 总结了在制氢体系中双助催化剂相对于单一助催化剂的五大优势: 促进载流子快速迁移、实现电子-空穴空间分离、提高产氢吸附/脱附动力学、提高催化剂光稳定性和阻断可逆反应. 随后, 概括了双助催化剂-半导体光催化剂的合成策略, 基于通常报道的水/溶剂热处理、煅烧、光沉积、自组装和化学沉积等助催化剂的合成方法, 可以采用一步法和两步法将两种助催化剂加载到半导体上, 获得三元复合材料. 探讨了双助催化剂-半导体光催化体系的设计策略, 详细总结了如何设计具有优化电子传递路径的Red-Red助催化剂体系和具有空间分离电荷的Red-Ox助催化剂体系. 其中, 为了优化电子传递路径, 两种还原型助催化剂的位置关系可分为三类: 核壳包裹结构、分散分布结构和相邻结构; 为了实现氧化/还原位点空间分离, 氧化-还原型双助催化剂在半导体表面可设计为三种结构: 内外结构、晶面相关结构和端侧结构. 最后, 提出了双助催化剂在光催化制氢领域中的现状、挑战及未来发展方向.
在未来, 可以继续开发新型无贵金属助催化剂来降低催化剂体系总成本, 真正达到经济实用目标; 需要继续发展利于规模化生产的双助催化剂三元复合材料的合成策略; 需要通过实验表征, 结合同位素标记法、分子模拟和密度泛函理论计算, 深入研究助催化剂的性质和作用机理. 希望本文能够为构建高效实用的双助催化剂三元析氢光催化体系提供借鉴.
伍超, 吕康乐, 李鑫, 李覃. 光催化产氢双助催化剂: 类别、合成和设计策略[J]. 催化学报, 2023, 54: 137-160.
Chao Wu, Kangle Lv, Xin Li, Qin Li. Dual cocatalysts for photocatalytic hydrogen evolution: Categories, synthesis, and design considerations[J]. Chinese Journal of Catalysis, 2023, 54: 137-160.
Semiconductor | Red (I)-Red (II) cocatalyst | Synthesis strategy | H2 evolution | Ref. (year) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Light source | Sacrificial reagent | Mass (mg) | RH2 (μmol·h-1·g-1) | Enhancement factor | AQY (%) | Stability | |||||||
TiO2 | I: Pd | two steps | chemical deposition | <400 nm (Xe) | — | 15 | 602 | 301 | NG | NG | [ | ||
II : Pt | hydrothermal | ||||||||||||
TiO2 | I: Pd | two steps | chemical deposition | 420-780 nm (Xe) | TEOA | 15 | 52 | NP | 0.2 (530 nm) | 20 h | [ | ||
II : Au | chemical deposition | ||||||||||||
TiO2 | I: Ti3C2 | one step | hydrothermal | UV-Vis (Xe) | Na2S/Na2SO3 | 25 | 319 | 4 | NG | 30 h | [ | ||
II: MoS2 | |||||||||||||
TiO2 | I: rGO | one step | impregnation | 420-780 nm (Xe) | Methanol | 15 | 0.53 | NG | NG | 16 h | [ | ||
II: Ag | |||||||||||||
TiO2 | I: Ti3C2 | two steps | hydrothermal | AM 1.5 (Xe) | Acetone/TEOA | 10 | 10506 | 193 | 7.5 (365 nm) | 24 h | [ | ||
II: MoS2 | hydrothermal | ||||||||||||
TiO2 | I: Ti3C2 | two steps | hydrothermal | AM 1.5 (Xe) | Acetone/TEOA | 10 | 3410 | 50 | 2.4 (365 nm) | 24 h | [ | ||
II: WS2 | hydrothermal | ||||||||||||
TiO2 | I: Ti3C2 | two steps | hydrothermal | AM 1.5 (Xe) | Acetone/TEOA | 10 | 9738 | 132 | 6.8 (365 nm) | 24 h | [ | ||
II: MoS2 | hydrothermal | ||||||||||||
TiO2 | I: Ti3C2 | two steps | hydrothermal | AM 1.5 (Xe) | Acetone/TEOA | 10 | 6426 | 87 | 4.2 (365 nm) | 24 h | [ | ||
II: MoS2 | hydrothermal | ||||||||||||
TiO2 | I: Au | two steps | photodeposition | 356 nm (LED) | Ethanol | 50 | 9616 | 291 | 46 (365 nm) | 36 h | [ | ||
II: NiS1+x | photodeposition | ||||||||||||
TiO2 | I: N-doped carbon | two steps | photodeposition | AM 1.5 (Xe) | TEOA | 10 | 24800 | 10 | 0.8 (365 nm) | 50 h | [ | ||
II: Au | calcination | ||||||||||||
TiO2 | I: Au | one step | chemical deposition | UV-Vis (Xe) | Methanol | 50 | 23666 | 10 | NG | NG | [ | ||
II: Pt | |||||||||||||
TiO2 | I: MoS2 | two steps | hydrothermal | UV(Xe) | Na2S/Na2SO3 | 20 | 129 | 4 | NG | NG | [ | ||
II: TiN | calcination | ||||||||||||
TiO2 | I: rGO | two steps | impregnation | 365 nm (LED) | Methanol | 50 | 207 | 30 | 5.9 (365 nm) | 20 h | [ | ||
II: MoSx | photodeposition | ||||||||||||
TiO2 | I: Ag | two steps | photodeposition | 365 nm (LED) | Methanol | 50 | 2380 | 52 | 9.8 (365 nm) | NG | [ | ||
II: Ag2S | chemical deposition | ||||||||||||
TiO2 | I: Au nanorod | two steps | ultrasonication | ≥420 nm (Xe) | TEOA | 20 | 9115 | NG | 9.1 (420 nm) | 20 h | [ | ||
g-C3N4 | II: Pt | photodeposition | |||||||||||
CdS | I: Ni | one step | ultrasonication | ≥420 nm (Xe) | TEOA | 10 | 5900 | 4 | NG | NG | [ | ||
II: graphene | |||||||||||||
CdS | I: Au | two steps | chemical deposition | ≥400 nm (Xe) | Na2S/Na2SO3 | 50 | 16350 | 112 | 41 (420 nm) | 20 h | [ | ||
II: PdS | chemical deposition | ||||||||||||
CdS | I: NiS2 | two steps | impregnation | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 3334 | 5 | NG | 12 h | [ | ||
II: carbon black | ultrasonication | ||||||||||||
CdS | I: MoS2 | One step | ultrasonication | AM 1.5 | LA | 1 | 168930 | 67 | NG | 25 h | [ | ||
II: SeS2 | |||||||||||||
CdS | I: MoS2 | two steps | hydrothermal | ≥420 nm (Xe) | LA | 100 | 2525 | 13 | NG | 18 h | [ | ||
II: NiS | hydrothermal | ||||||||||||
II: Co1.4Ni0.6P | chemical deposition | ||||||||||||
g-C3N4 | I: acetylene black | two steps | ultrasonication | ≥420 nm (Xe) | TEOA | 50 | 240 | 320 | NG | 12 h | [ | ||
II: Ni(OH)2 | chemical deposition | ||||||||||||
g-C3N4 | I: Ni | two steps | calcination | ≥420 nm (Xe) | TEOA | 50 | 515 | 406 | NG | 12 h | [ | ||
II: NiS | impregnation | ||||||||||||
g-C3N4 | I: Ti3C2 | two steps | impregnation | AM 1.5 | TEOA | 30 | 5100 | 15 | 3.1 (420 nm) | 6 h | [ | ||
II: Pt | photodeposition | ||||||||||||
g-C3N4 | I: NiS | one step | ultrasonication | UV-Vis (Xe) | TEOA | 10 | 6893 | 41 | NG | NG | [ | ||
II: Ni2P | |||||||||||||
g-C3N4 | I: Au | two steps | photodeposition | ≥420 nm (Xe) | TEOA | 80 | 239 | NG | NG | 35 h | [ | ||
II: Pt | photodeposition | ||||||||||||
g-C3N4 | I: Ni3C | two steps | ultrasonication | ≥420 nm (Xe) | TEOA | 10 | 1128 | NG | 1.5 (420 nm) | 12 h | [ | ||
II: Ni | calcination | ||||||||||||
g-C3N4 | I: Carbon black | two steps | ultrasonication | ≥420 nm (Xe) | TEOA | 50 | 405 | 810 | NG | 12 h | [ | ||
II: Co1.4Ni0.6P | chemical deposition | ||||||||||||
ZnIn2S4 | I: Au | one step | self-assembly | ≥420 nm (Xe) | Na2S/Na2SO3 | 10 | 4175 | 10 | 6.2 (420 nm) | 20 h | [ | ||
II: Pt | |||||||||||||
ZnIn2S4 | I: WN-QDs | one step | hydrothermal | ≥400 nm (Xe) | LA | 20 | 196 | 61 | NP | NP | [ | ||
II: Graphene | |||||||||||||
Zn0.5Cd0.5S | I: rGO | one step | photodeposition | ≥420 nm (Xe) | LA | 30 | 77000 | 82 | NP | 50 h | [ | ||
II: MoS2 | |||||||||||||
Mn0.5Cd0.5S | I: rGO | one step | hydrothermal | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 12843 | 4 | 36.4 (420 nm) | 16 h | [ | ||
II: MoS2 | |||||||||||||
CuSe | I: Au | two steps | chemical deposition | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 4180 | 44 | 0.6 (600 nm) | 24 h | [ | ||
Ⅱ: Pt | chemical deposition | ||||||||||||
Nb2O5 | I: Nb2CTx | two steps | hydrothermal | UV-Vis (Xe) | Methanol | 20 | 682 | NG | 1.6 (313 nm) | 15 h | [ | ||
II: Ag | photodeposition | ||||||||||||
SiC | I: Au | two steps | photodeposition | ≥420 nm (Xe) | Na2S/Na2SO3 | 30 | 100 | NG | 2.2 (420 nm) | 25 h | [ | ||
II: Pt | photodeposition |
Table 1 Summary of the photocatalyst systems with Red-Red cocatalysts for H2 evolution.
Semiconductor | Red (I)-Red (II) cocatalyst | Synthesis strategy | H2 evolution | Ref. (year) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Light source | Sacrificial reagent | Mass (mg) | RH2 (μmol·h-1·g-1) | Enhancement factor | AQY (%) | Stability | |||||||
TiO2 | I: Pd | two steps | chemical deposition | <400 nm (Xe) | — | 15 | 602 | 301 | NG | NG | [ | ||
II : Pt | hydrothermal | ||||||||||||
TiO2 | I: Pd | two steps | chemical deposition | 420-780 nm (Xe) | TEOA | 15 | 52 | NP | 0.2 (530 nm) | 20 h | [ | ||
II : Au | chemical deposition | ||||||||||||
TiO2 | I: Ti3C2 | one step | hydrothermal | UV-Vis (Xe) | Na2S/Na2SO3 | 25 | 319 | 4 | NG | 30 h | [ | ||
II: MoS2 | |||||||||||||
TiO2 | I: rGO | one step | impregnation | 420-780 nm (Xe) | Methanol | 15 | 0.53 | NG | NG | 16 h | [ | ||
II: Ag | |||||||||||||
TiO2 | I: Ti3C2 | two steps | hydrothermal | AM 1.5 (Xe) | Acetone/TEOA | 10 | 10506 | 193 | 7.5 (365 nm) | 24 h | [ | ||
II: MoS2 | hydrothermal | ||||||||||||
TiO2 | I: Ti3C2 | two steps | hydrothermal | AM 1.5 (Xe) | Acetone/TEOA | 10 | 3410 | 50 | 2.4 (365 nm) | 24 h | [ | ||
II: WS2 | hydrothermal | ||||||||||||
TiO2 | I: Ti3C2 | two steps | hydrothermal | AM 1.5 (Xe) | Acetone/TEOA | 10 | 9738 | 132 | 6.8 (365 nm) | 24 h | [ | ||
II: MoS2 | hydrothermal | ||||||||||||
TiO2 | I: Ti3C2 | two steps | hydrothermal | AM 1.5 (Xe) | Acetone/TEOA | 10 | 6426 | 87 | 4.2 (365 nm) | 24 h | [ | ||
II: MoS2 | hydrothermal | ||||||||||||
TiO2 | I: Au | two steps | photodeposition | 356 nm (LED) | Ethanol | 50 | 9616 | 291 | 46 (365 nm) | 36 h | [ | ||
II: NiS1+x | photodeposition | ||||||||||||
TiO2 | I: N-doped carbon | two steps | photodeposition | AM 1.5 (Xe) | TEOA | 10 | 24800 | 10 | 0.8 (365 nm) | 50 h | [ | ||
II: Au | calcination | ||||||||||||
TiO2 | I: Au | one step | chemical deposition | UV-Vis (Xe) | Methanol | 50 | 23666 | 10 | NG | NG | [ | ||
II: Pt | |||||||||||||
TiO2 | I: MoS2 | two steps | hydrothermal | UV(Xe) | Na2S/Na2SO3 | 20 | 129 | 4 | NG | NG | [ | ||
II: TiN | calcination | ||||||||||||
TiO2 | I: rGO | two steps | impregnation | 365 nm (LED) | Methanol | 50 | 207 | 30 | 5.9 (365 nm) | 20 h | [ | ||
II: MoSx | photodeposition | ||||||||||||
TiO2 | I: Ag | two steps | photodeposition | 365 nm (LED) | Methanol | 50 | 2380 | 52 | 9.8 (365 nm) | NG | [ | ||
II: Ag2S | chemical deposition | ||||||||||||
TiO2 | I: Au nanorod | two steps | ultrasonication | ≥420 nm (Xe) | TEOA | 20 | 9115 | NG | 9.1 (420 nm) | 20 h | [ | ||
g-C3N4 | II: Pt | photodeposition | |||||||||||
CdS | I: Ni | one step | ultrasonication | ≥420 nm (Xe) | TEOA | 10 | 5900 | 4 | NG | NG | [ | ||
II: graphene | |||||||||||||
CdS | I: Au | two steps | chemical deposition | ≥400 nm (Xe) | Na2S/Na2SO3 | 50 | 16350 | 112 | 41 (420 nm) | 20 h | [ | ||
II: PdS | chemical deposition | ||||||||||||
CdS | I: NiS2 | two steps | impregnation | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 3334 | 5 | NG | 12 h | [ | ||
II: carbon black | ultrasonication | ||||||||||||
CdS | I: MoS2 | One step | ultrasonication | AM 1.5 | LA | 1 | 168930 | 67 | NG | 25 h | [ | ||
II: SeS2 | |||||||||||||
CdS | I: MoS2 | two steps | hydrothermal | ≥420 nm (Xe) | LA | 100 | 2525 | 13 | NG | 18 h | [ | ||
II: NiS | hydrothermal | ||||||||||||
II: Co1.4Ni0.6P | chemical deposition | ||||||||||||
g-C3N4 | I: acetylene black | two steps | ultrasonication | ≥420 nm (Xe) | TEOA | 50 | 240 | 320 | NG | 12 h | [ | ||
II: Ni(OH)2 | chemical deposition | ||||||||||||
g-C3N4 | I: Ni | two steps | calcination | ≥420 nm (Xe) | TEOA | 50 | 515 | 406 | NG | 12 h | [ | ||
II: NiS | impregnation | ||||||||||||
g-C3N4 | I: Ti3C2 | two steps | impregnation | AM 1.5 | TEOA | 30 | 5100 | 15 | 3.1 (420 nm) | 6 h | [ | ||
II: Pt | photodeposition | ||||||||||||
g-C3N4 | I: NiS | one step | ultrasonication | UV-Vis (Xe) | TEOA | 10 | 6893 | 41 | NG | NG | [ | ||
II: Ni2P | |||||||||||||
g-C3N4 | I: Au | two steps | photodeposition | ≥420 nm (Xe) | TEOA | 80 | 239 | NG | NG | 35 h | [ | ||
II: Pt | photodeposition | ||||||||||||
g-C3N4 | I: Ni3C | two steps | ultrasonication | ≥420 nm (Xe) | TEOA | 10 | 1128 | NG | 1.5 (420 nm) | 12 h | [ | ||
II: Ni | calcination | ||||||||||||
g-C3N4 | I: Carbon black | two steps | ultrasonication | ≥420 nm (Xe) | TEOA | 50 | 405 | 810 | NG | 12 h | [ | ||
II: Co1.4Ni0.6P | chemical deposition | ||||||||||||
ZnIn2S4 | I: Au | one step | self-assembly | ≥420 nm (Xe) | Na2S/Na2SO3 | 10 | 4175 | 10 | 6.2 (420 nm) | 20 h | [ | ||
II: Pt | |||||||||||||
ZnIn2S4 | I: WN-QDs | one step | hydrothermal | ≥400 nm (Xe) | LA | 20 | 196 | 61 | NP | NP | [ | ||
II: Graphene | |||||||||||||
Zn0.5Cd0.5S | I: rGO | one step | photodeposition | ≥420 nm (Xe) | LA | 30 | 77000 | 82 | NP | 50 h | [ | ||
II: MoS2 | |||||||||||||
Mn0.5Cd0.5S | I: rGO | one step | hydrothermal | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 12843 | 4 | 36.4 (420 nm) | 16 h | [ | ||
II: MoS2 | |||||||||||||
CuSe | I: Au | two steps | chemical deposition | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 4180 | 44 | 0.6 (600 nm) | 24 h | [ | ||
Ⅱ: Pt | chemical deposition | ||||||||||||
Nb2O5 | I: Nb2CTx | two steps | hydrothermal | UV-Vis (Xe) | Methanol | 20 | 682 | NG | 1.6 (313 nm) | 15 h | [ | ||
II: Ag | photodeposition | ||||||||||||
SiC | I: Au | two steps | photodeposition | ≥420 nm (Xe) | Na2S/Na2SO3 | 30 | 100 | NG | 2.2 (420 nm) | 25 h | [ | ||
II: Pt | photodeposition |
Semiconductor | Red (I)-Ox (II) cocatalysts | Synthesis strategy | H2 evolution | Ref. (year) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Light source | Sacrificial reagent | Mass (mg) | RH2 (μmol h-1 g-1) | Enhancement factor | AQY (%) | Stability | ||||||
TiO2 | I: Pt | two steps | chemical deposition | 365 nm (LED) | methanol | 50 | 4200 | 42 | NG | NG | [ | |
II: RuO2 | calcination | |||||||||||
TiO2 | I: Pd | two steps | impregnation | UV-Vis (Xe) | methanol | 100 | 7740 | NG | NG | NG | [ | |
II: IrOx | photodeposition | |||||||||||
TiO2 | I: Pt | two steps | photodeposition | UV-Vis (Xe) | methanol | 50 | 5280 | NG | 11.3 (365 nm) | 9 h | [ | |
II: Co3O4 | photodeposition | |||||||||||
TiO2 | I: Cu | two steps | photodeposition | AM 1.5 | methanol | 20 | 764 | NG | NG | 25 h | [ | |
II: Ti3C2Tx | hydrothermal | |||||||||||
TiO2 | I: Pt | two steps | photodeposition | AM 1.5 | methanol | 10 | 45357 | 187 | NG | NG | [ | |
II: PdOx | calcination | |||||||||||
TiO2 | I: CuO | one step | ball-milling | UV-Vis (Xe) | methanol | 20 | 14300 | NG | NG | NG | [ | |
II: Co3O4 | ||||||||||||
TiO2 | I: Pt | two steps | AL deposition | UV (Xe) | methanol | 35 | 5518 | 5 | NG | NG | [ | |
II: Au | calcination | |||||||||||
CdS | I: rGO | two steps | calcination | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 5450 | 7 | 2.4 (420 nm) | 16 h | [ | |
II: MnOx | self-assembly | |||||||||||
CdS | I: MoS2 | one step | calcination | 400-800 nm (Xe) | LA | 20 | 1200 | 8 | 11.3 (420 nm) | 12 h | [ | |
II: Ni(OH)2 | ||||||||||||
CdS | I: MoS2 | two steps | photodeposition | ≥420 nm (Xe) | TEOA | 20 | 7400 | 6 | 7.6 (420 nm) | NP | [ | |
II: CoOx | photodeposition | |||||||||||
CdS | I: MoS2 | two steps | photodeposition | ≥420 nm (Xe) | LA | 20 | 40500 | 27 | 36 (420 nm) | 20 h | [ | |
II: Co-Pi | photodeposition | |||||||||||
CdS | I: MoS2 | two steps | hydrothermal | AM 1.5 | — | 100 | 52 | NG | 0.3 (365 nm) | 25 h | [ | |
II: RuO2 | hydrothermal | |||||||||||
CdS | I: carbon dots | two steps | ultrasonication | ≥420 nm (Xe) | Na2S/Na2SO3 | 100 | 1444 | 5 | NG | 15 h | [ | |
II: NiS | hydrothermal | |||||||||||
CdS | I: MoS2 | two steps | chemical deposition | ≥420 nm (Xe) | LA | 20 | 14888 | 7 | NG | 12 h | [ | |
II: Ti3C2 | hydrothermal | |||||||||||
CdS | I: Ni(II) | two steps | impregnation | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 3438 | 2 | NG | 20 h | [ | |
II: PdS | chemical deposition | |||||||||||
P-doped CdS | I: Ag2S | two steps | photodeposition | ≥420 nm (Xe) | LA | 20 | 4828 | 45 | 49.5 (420 nm) | 12 h | [ | |
Ⅱ: NiS | hydrothermal | |||||||||||
CdSe | I: Pt | two steps | photodeposition | ≥420 nm (Xe) | Na2S/Na2SO3 | 100 | 5300 | 20 | 45 (420 nm) | 16 h | [ | |
II: CoOx | photodeposition | |||||||||||
g-C3N4 | I: Au | two steps | impregnation | ≥420 nm (Xe) | methanol | 50 | 1533 | 12 | 8.61 (420 nm) | 20 h | [ | |
II: CoOx | calcination | |||||||||||
g-C3N4 | I: MoS2 | two steps | hydrothermal | UV-Vis (Xe) | methanol | 20 | 3400 | 366 | 6.4 (420 nm) | 30 h | [ | |
II: Ni(OH)2 | chemical deposition | |||||||||||
Zn0.5Cd0.5S | I: Pt | two steps | photodeposition | ≥420 nm (Xe) | Na2S/Na2SO3 | 10 | 7300 | 36 | 89.0 (420 nm) | 16 h | [ | |
II: PdS | photodeposition | |||||||||||
Mn0.5Cd0.5S | I: MoS2 | two steps | chemical deposition | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 1375 | 22 | 16.1 (420 nm) | 12 h | [ | |
II: Cu2-xS | photodeposition | |||||||||||
ZnCdS | I: graphene QDs | two steps | hydrothermal | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 10340 | 15 | 22.4 (420 nm) | 25 h | [ | |
II: PdS | chemical deposition | |||||||||||
La2Ti2O7 | I: rGO | two steps | hydrothermal | AM 1.5 | TEOA | 20 | 532 | 9 | NG | NG | [ | |
II: NiFe-LDH | self-assembly | |||||||||||
PbTiO3 | I: Pt | two steps | photodeposition | UV-Vis (Xe) | TEOA | 100 | 350 | NG | NG | NG | [ | |
II: MnOx | photodeposition |
Table 2 Summary of photocatalyst systems with Red-Ox cocatalysts for H2 evolution.
Semiconductor | Red (I)-Ox (II) cocatalysts | Synthesis strategy | H2 evolution | Ref. (year) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Light source | Sacrificial reagent | Mass (mg) | RH2 (μmol h-1 g-1) | Enhancement factor | AQY (%) | Stability | ||||||
TiO2 | I: Pt | two steps | chemical deposition | 365 nm (LED) | methanol | 50 | 4200 | 42 | NG | NG | [ | |
II: RuO2 | calcination | |||||||||||
TiO2 | I: Pd | two steps | impregnation | UV-Vis (Xe) | methanol | 100 | 7740 | NG | NG | NG | [ | |
II: IrOx | photodeposition | |||||||||||
TiO2 | I: Pt | two steps | photodeposition | UV-Vis (Xe) | methanol | 50 | 5280 | NG | 11.3 (365 nm) | 9 h | [ | |
II: Co3O4 | photodeposition | |||||||||||
TiO2 | I: Cu | two steps | photodeposition | AM 1.5 | methanol | 20 | 764 | NG | NG | 25 h | [ | |
II: Ti3C2Tx | hydrothermal | |||||||||||
TiO2 | I: Pt | two steps | photodeposition | AM 1.5 | methanol | 10 | 45357 | 187 | NG | NG | [ | |
II: PdOx | calcination | |||||||||||
TiO2 | I: CuO | one step | ball-milling | UV-Vis (Xe) | methanol | 20 | 14300 | NG | NG | NG | [ | |
II: Co3O4 | ||||||||||||
TiO2 | I: Pt | two steps | AL deposition | UV (Xe) | methanol | 35 | 5518 | 5 | NG | NG | [ | |
II: Au | calcination | |||||||||||
CdS | I: rGO | two steps | calcination | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 5450 | 7 | 2.4 (420 nm) | 16 h | [ | |
II: MnOx | self-assembly | |||||||||||
CdS | I: MoS2 | one step | calcination | 400-800 nm (Xe) | LA | 20 | 1200 | 8 | 11.3 (420 nm) | 12 h | [ | |
II: Ni(OH)2 | ||||||||||||
CdS | I: MoS2 | two steps | photodeposition | ≥420 nm (Xe) | TEOA | 20 | 7400 | 6 | 7.6 (420 nm) | NP | [ | |
II: CoOx | photodeposition | |||||||||||
CdS | I: MoS2 | two steps | photodeposition | ≥420 nm (Xe) | LA | 20 | 40500 | 27 | 36 (420 nm) | 20 h | [ | |
II: Co-Pi | photodeposition | |||||||||||
CdS | I: MoS2 | two steps | hydrothermal | AM 1.5 | — | 100 | 52 | NG | 0.3 (365 nm) | 25 h | [ | |
II: RuO2 | hydrothermal | |||||||||||
CdS | I: carbon dots | two steps | ultrasonication | ≥420 nm (Xe) | Na2S/Na2SO3 | 100 | 1444 | 5 | NG | 15 h | [ | |
II: NiS | hydrothermal | |||||||||||
CdS | I: MoS2 | two steps | chemical deposition | ≥420 nm (Xe) | LA | 20 | 14888 | 7 | NG | 12 h | [ | |
II: Ti3C2 | hydrothermal | |||||||||||
CdS | I: Ni(II) | two steps | impregnation | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 3438 | 2 | NG | 20 h | [ | |
II: PdS | chemical deposition | |||||||||||
P-doped CdS | I: Ag2S | two steps | photodeposition | ≥420 nm (Xe) | LA | 20 | 4828 | 45 | 49.5 (420 nm) | 12 h | [ | |
Ⅱ: NiS | hydrothermal | |||||||||||
CdSe | I: Pt | two steps | photodeposition | ≥420 nm (Xe) | Na2S/Na2SO3 | 100 | 5300 | 20 | 45 (420 nm) | 16 h | [ | |
II: CoOx | photodeposition | |||||||||||
g-C3N4 | I: Au | two steps | impregnation | ≥420 nm (Xe) | methanol | 50 | 1533 | 12 | 8.61 (420 nm) | 20 h | [ | |
II: CoOx | calcination | |||||||||||
g-C3N4 | I: MoS2 | two steps | hydrothermal | UV-Vis (Xe) | methanol | 20 | 3400 | 366 | 6.4 (420 nm) | 30 h | [ | |
II: Ni(OH)2 | chemical deposition | |||||||||||
Zn0.5Cd0.5S | I: Pt | two steps | photodeposition | ≥420 nm (Xe) | Na2S/Na2SO3 | 10 | 7300 | 36 | 89.0 (420 nm) | 16 h | [ | |
II: PdS | photodeposition | |||||||||||
Mn0.5Cd0.5S | I: MoS2 | two steps | chemical deposition | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 1375 | 22 | 16.1 (420 nm) | 12 h | [ | |
II: Cu2-xS | photodeposition | |||||||||||
ZnCdS | I: graphene QDs | two steps | hydrothermal | ≥420 nm (Xe) | Na2S/Na2SO3 | 50 | 10340 | 15 | 22.4 (420 nm) | 25 h | [ | |
II: PdS | chemical deposition | |||||||||||
La2Ti2O7 | I: rGO | two steps | hydrothermal | AM 1.5 | TEOA | 20 | 532 | 9 | NG | NG | [ | |
II: NiFe-LDH | self-assembly | |||||||||||
PbTiO3 | I: Pt | two steps | photodeposition | UV-Vis (Xe) | TEOA | 100 | 350 | NG | NG | NG | [ | |
II: MnOx | photodeposition |
Fig. 4. TEM (inset: partial enlargement) (a), HRTEM (b), and HAADF-STEM (c) images and corresponding EDS maps of Au and Pt for the Pt/Au NR769/CNNT650 sample. Photocatalytic H2 evolution rates of CNNT650 deposited with different Pt and/or Au NRs under visible-light irradiation (d) and >590 nm irradiation (e). (f) Photocatalytic mechanism of Pt/Au NR769/CNNT650 with LSPR enhancement. Reprinted with permission from Ref. [116]. Copyright 2019, John Wiley and Sons.
Fig. 5. (a) Schematic illustration of Au-induced self-redox deposition formation of core-shell Au@MoS2+x-loaded TiO2 photocatalysts. (b) Production mechanism of Au@MoS2+x. TEM (c) and HRTEM (d) images of TiO2/Au@MoS2+x. (e,f) Schematic diagrams of the enhanced interfacial transfer of photogenerated electrons on the Au@MoS2+x cocatalyst that enables fast photocatalytic H2 evolution. Reprinted with permission from Ref. [163]. Copyright 2023, John Wiley and Sons.
Fig. 6. TEM (a) and HR-TEM (b) images of a typical ZCS@MoS2/rGO. (c) Schematic diagram of ZCS@MoS2/rGO under solar light irradiation. Reprinted with permission from Ref. [68]. Copyright 2016, American Chemical Society.
Fig. 7. TEM image (a), HRTEM image (b), and Corresponding SAED pattern (c) of PdOx@TiO2@Pt. (d-i) EDS maps of PdOx@TiO2@Pt, where the (e) shows the overlaid images of Ti, O, Pd, and Pt. (j) Schematic illustration of the photocatalytic H2-evolution mechanism over the MOx@TiO2@Pt photocatalyst. Reprinted with permission from Ref. [132]. Copyright 2020, American Chemical Society.
Fig. 9. Time-dependent amount (a) and average rate (b) of photocatalytic H2 production over different photocatalysts. Proposed photocatalytic H2 production mechanisms over g-C3N4-1.0%NiS (c), g-C3N4-0.5%Ni (d), and ternary g-C3N4-Ni-NiS (e) composites under visible-light irradiation. Reprinted with permission from Ref. [84]. Copyright 2017, American Chemical Society.
Fig. 10. (a) Comparison of the H2-production rate of Au/CuSe/Pt, Au/CuSe, and Pt/CuSe hybrids. (b) Normalized ΔI probed at 560 and 900 nm for Au, Au/CuSe, and Au/CuSe/Pt. (c) Schematic diagrams of the possible electron-transfer processes in the Au/CuSe/Pt tangential hybrid during the photocatalytic HER. Reprinted with permission from Ref. [127]. Copyright 2020, John Wiley and Sons.
Fig. 11. (a) Comparison of the HER performance of g-C3N4 and g-C3N4-MoS2 with and without M(OH)x, where A is g-C3N4-Ni(OH)2, B is g-C3N4-Co(OH)2, and C is g-C3N4-Fe(OH)3. (b) TRPL spectra of pristine g-C3N4, g-C3N4-MoS2, and its heterostructures with M(OH)x. (c) Schematic illustration of photo-excited charge-carrier separation and the photocatalytic reaction of the ternary g-C3N4-MoS2-Ni(OH)2 photocatalyst. Reprinted with permission from Ref. [67]. Copyright 2020, RSC Pub.
Fig. 12. (a) Calculated Gibbs free energy diagram of the HER on different sites of WO3/C3N4@C. (b) Linear sweep voltammetry plots of ZnIn2S4 and 2 wt% WO3/C3N4@C/ZnIn2S4 in 0.2 mol L-1 Na2SO4 solution measured at a scan rate of 50 mV s-1. (c) Temperature dependence of the reaction rate of ZnIn2S4 and 2 wt% WO3/C3N4@C/ZnIn2S4. (d) Schematic diagram of the Ea difference between ZnIn2S4 and 2 wt% WO3/C3N4@C/ZnIn2S4. Reprinted with permission from Ref. [126]. Copyright 2021, Elsevier.
Fig. 13. (a) Cycling activity results for CdS, CdS@Ti3C2, and CdS@MoS2/Ti3C2. (b) Time-dependent photocatalytic H2 production profile of CdS@MoS2/Ti3C2. (c) Photographs of initial H2-production solutions containing CdS, CdS@Ti3C2, and CdS@MoS2/Ti3C2 and those after 4 h of illumination. (d) Proposed mechanism of charge transfer over ternary CdS@MoS2/Ti3C2 photocatalysts during the photocatalytic HER, where lactic acid (LA) was used as the sacrificial agent. Reprinted with permission from Ref. [138]. Copyright 2023, Elsevier.
Fig. 14. Schematic of photocatalytic H2 evolution and the back reaction over PtO clusters and metallic Pt (m-Pt) NPs. Reprinted with permission from Ref. [178]. Copyright 2013, Springer Nature.
Fig. 15. (a) Schematic of the preparation of Ti3C2-TiO2-MoS2 catalysts. SEM images of Ti3C2 (b) and Ti3C2-TiO2-MoS2 (c) samples. (d) EDS map of Ti3C2-TiO2-MoS2. Reprinted with permission from Ref. [110]. Copyright 2021, John Wiley and Sons.
Fig. 16. (a) Schematic representation for the formation process of Au@Pt/ZIS. (b,c) TEM image of Au16@Pt/ZIS. (d) STEM-HAADF images and EDS maps of Au16@Pt NPs. Reprinted with permission from Ref. [65]. Copyright 2021, Elsevier.
Fig. 17. (a) Schematic of the preparation of CdS@MoS2/Ti3C2 composites. TEM images ofTi3C2 (b) and MoS2/Ti3C2 (c). TEM (d) and HRTEM (e) images of CdS@MoS2/Ti3C2. Reprinted with permission from Ref. [138]. Copyright 2023, Elsevier.
Fig. 18. (a) Schematic diagram of the preparation of CdS@MoS2@Co-Pi composite photocatalysts. (b) Typical TEM image of as-prepared blank CdS NWs. (c,d) Typical TEM images of CdS@MoS2@Co-Pi composite. Reprinted with permission from Ref. [137]. Copyright 2019, American Chemical Society.
Fig. 19. Schematic illustration of the electron-transfer pathway in Au-Pt-SiC and Pt-Au-SiC samples. Reprinted with permission from Ref. [128]. Copyright 2022, Elsevier.
Fig. 21. Three configurations of dual reductive cocatalyst-semiconductor systems with optimal electron-transport paths: core-shell (a), dispersed (b), and the adjacent (c) structures.
Fig. 22. (a) TEM and HRTEM images of CN08-2. (b) Schematic of Ni3C@Ni/g-C3N4 photocatalysts. (c) Average H2-evolution rate over g-C3N4-8-Ni3C, CN08-0.5, CN08-1, CN08-2, CN08-3, and g-C3N4-1Pt systems. (d) Schematic of the photo-induced charge separation process in the Ni3C/g-C3N4 composite photocatalysts. Reprinted with permission from Ref. [125]. Copyright 2021, Elsevier.
Fig. 23. Fig. 23. TEM (a,b) and HRTEM (c) images of a TiO2/Ag-Ag2S photocatalyst. (d) The energy-band structures of TiO2, Ag and Ag2S. (e) Schematic diagram illustrating the photocatalytic H2-evolution mechanism of TiO2/Ag-Ag2S. Reprinted with permission from Ref. [115]. Copyright 2018, Elsevier.
Fig. 24. (a) HAADF-STEM images and corresponding EDS maps of Au/Pd-TiO2. Average H2 production rates of TiO2-based photocatalysts (15 mg) under broad-spectrum irradiation (b) and schematics of the corresponding charge kinetics (c). Reprinted with permission from Ref. [75]. Copyright 2019, John Wiley and Sons.
Fig. 25. Three configurations of oxidative and reductive co-catalyst-semiconductor systems promoting spatial segregation of electron-hole pairs: internal-external distribution using hollow structures (a), crystallographically determined distributions based on different facet types (b), and tip-side distribution using nanorods (c).
Fig. 26. (a) Architecture of PdS@CdS@MoS2. (b) HAADF-STEM image of a quarter of a PdS@CdS@MoS2 nanosphere and the corresponding EDS maps. (c) Cross-sectional view of a chloroplast structure. (d) Diagrams of photoinduced charge carrier migration on a PdS@CdS@MoS2 hollow sphere. Reprinted with permission from Ref. [184]. Copyright 2022, John Wiley and Sons.
Fig. 27. (a) TEM images of TiO2-Co3O4-Pt samples. (b) Schematics of selective deposition of Pt and Co3O4 on {101} and {001} crystal surfaces of TiO2, respectively, and the related hydrogen production mechanism of TiO2-Co3O4-Pt. Reprinted with permission from Ref. [130]. Copyright 2016, Elsevier. (c,d) SEM images of Pt/{001}PbTiO3 and MnOx/{001}PbTiO3 (insets show corresponding structural schematics. (e) Schematic of the process of loading redox cocatalysts on single-domain ferroelectric crystals where A is the electron acceptor and D is the electron donor. Reprinted with permission from Ref. [145]. Copyright 2014, Royal Society of Chemistry.
Fig. 28. (a) Schematic of SrTiO3 nanocrystals changing from a 6-facet to 18-facet structure. (b) Morphology of 6-facet SrTiO3 nanocrystals. (c) Morphology of 18-facet SrTiO3 nanocrystals. SEM images of 18-facet and 6-facet SrTiO3 nanocrystals with simultaneous photodeposition of Pt and Co3O4 as cocatalysts: Pt-Co3O4/18-facet SrTiO3 (d) and Pt-Co3O4/6-facet SrTiO3 (e). Reprinted with permission from Ref. [188]. Copyright 2016, RSC Publishing.
Fig. 29. TEM images of (RuO2/CdS)@MoS2 (a) and RuO2/CdS/MoS2 (b,c). (d) Hydrogen and oxygen production under illumination over time. (e) Schematic of charge-transfer routes. Reprinted with permission from Ref. [83]. Copyright 2020, John Wiley and Sons.
|
[1] | 赵彬彬, 钟威, 陈峰, 王苹, 别传彪, 余火根. 高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127-143. |
[2] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[3] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
[4] | 孙丽娟, 于晓慧, 唐丽永, 王伟康, 刘芹芹. 构建K3PW12O40/CdS核壳S型异质结实现同步太阳能光催化分解水和选择性苯甲醇氧化反应[J]. 催化学报, 2023, 52(9): 164-175. |
[5] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[6] | 江梓聪, 程蓓, 张留洋, 张振翼, 别传彪. 氧化锌基梯型异质结光催化剂[J]. 催化学报, 2023, 52(9): 32-49. |
[7] | 刘博文, 蔡家杰, 张建军, 谭海燕, 程蓓, 许景三. MOF/CdS梯型光催化剂同时进行苯甲醇氧化和析氢反应及其机理研究[J]. 催化学报, 2023, 51(8): 204-215. |
[8] | 宋明明, 宋相海, 刘鑫, 周伟强, 霍鹏伟. ZnIn2S4/MOF-808微球结构S型异质结光催化剂的制备及其光还原CO2性能研究[J]. 催化学报, 2023, 51(8): 180-192. |
[9] | 邵秀丽, 李可, 李静萍, 程强, 王国宏, 王楷. 揭示NiS@Ta2O5纳米纤维中梯型电荷转移路径及光催化CO2转化性能[J]. 催化学报, 2023, 51(8): 193-203. |
[10] | 李世杰, 王春春, 董珂欣, 张鹏, 陈晓波, 李鑫. 新型MIL-101(Fe)/BiOBr S型异质催化剂用于高效光催化降解抗生素和还原六价铬: 光催化性能分析和光催化机理研究[J]. 催化学报, 2023, 51(8): 101-112. |
[11] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
[12] | 阎菲, 张由子, 刘思碧, 邹睿卿, Jahan B Ghasemi, 李炫华. 供体-受体型卟啉基金属有机框架实现有效电荷分离高效光催化析氢[J]. 催化学报, 2023, 51(8): 124-134. |
[13] | 孙利娟, 王伟康, 路平, 刘芹芹, 王乐乐, 唐华. 纳米高熵合金实现光催化剂肖特基势垒的调控用于光催化制氢与苯甲醇氧化耦合反应[J]. 催化学报, 2023, 51(8): 90-100. |
[14] | 刘海峰, 黄祥, 陈加藏. 电子态调控促进氢气无损耗纯化中CO的光致富集和氧化[J]. 催化学报, 2023, 51(8): 49-54. |
[15] | 乔秀清, 李晨, 王紫昭, 侯东芳, 李东升. TiO2-x@C/MoO2肖特基结: 合理设计及高效电荷分离提升光催化性能[J]. 催化学报, 2023, 51(8): 66-79. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||