催化学报 ›› 2023, Vol. 54: 137-160.DOI: 10.1016/S1872-2067(23)64542-5

• 综述 • 上一篇    下一篇

光催化产氢双助催化剂: 类别、合成和设计策略

伍超a, 吕康乐a, 李鑫b,*(), 李覃a,*()   

  1. a中南民族大学, 催化与能源材料化学教育部重点实验室, 催化与材料科学湖北省重点实验室, 国家民委分析化学重点实验室, 湖北武汉430074
    b华南农业大学, 生物质工程研究所, 农业农村部能源植物资源与利用重点实验室, 广东广州510642
  • 收稿日期:2023-08-20 接受日期:2023-09-27 出版日期:2023-11-18 发布日期:2023-11-15
  • 通讯作者: *电子信箱: liqin0518@mail.scuec.edu.cn (李覃), xinli@scau.edu.cn (李鑫).
  • 基金资助:
    国家自然科学基金(21972171);中南民族大学中央高校基本研究经费(CZQ23037);湖北省自然科学基金(2021CFA022)

Dual cocatalysts for photocatalytic hydrogen evolution: Categories, synthesis, and design considerations

Chao Wua, Kangle Lva, Xin Lib,*(), Qin Lia,*()   

  1. aKey Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, Hubei, China
    bInstitute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, China
  • Received:2023-08-20 Accepted:2023-09-27 Online:2023-11-18 Published:2023-11-15
  • Contact: *E-mail: liqin0518@mail.scuec.edu.cn (Q. Li), xinli@scau.edu.cn (X. Li).
  • About author:Xin Li (South China Agricultural University) received his B.S. and Ph.D. degrees in chemical engineering from Zhengzhou University in 2002 and the South China University of Technology in 2007, respectively. Then, he joined the South China Agricultural University as a faculty staff member, and became a professor in 2017. During 2012 and 2019, he worked as a visiting scholar at the Electrochemistry Center, the University of Texas at Austin, and the Department of Chemistry, the University of Utah, respectively. His research interests include photocatalysis, photoelectrochemistry, adsorption, biomass engineering and related materials, and device development (see http://www.researcherid.com/rid/A-2698-2011).
    Qin Li (School of Chemistry and Materials Science, South Central Minzu University) received her B.S. in 2009 and Ph.D degree in 2014 from Wuhan University of Technology. She was co-trained as a graduate student in 2010-2011 at the National Nanoscience Center. At the end of 2014, she joined the faculty of School of Chemistry and Materials Science, South Central Minzu University in Wuhan, and became an associate professor in 2020. Over the last 10 years, her research has focused on photocatalytic hydrogen production from water splitting over metal sulfide based composite materials. She has been ranked among the top 100000 scientists in the world in 2022.
  • Supported by:
    National Natural Science Foundation of China(21972171);Fundamental Research Funds for the Central Universities, South- Central MinZu University(CZQ23037);Hubei Provincial Natural Science Foundation, China(2021CFA022)

摘要:

在低碳经济背景下, 开发以氢能为代表的清洁可再生能源至关重要. 利用太阳能驱动半导体进行光催化分解水, 是未来可持续制取氢气的有效方法之一. 然而, 光催化制氢技术产业化受限于半导体表面光生载流子复合效率高和量子效率低. 解决上述问题的办法是在半导体中引入双元助催化剂, 这不仅可以促使三相界面的形成, 促进界面电荷的有效转移, 而且不同种类的双助催化剂可以为半导体提供各自的积极作用, 协同提高光催化产氢效率和稳定性. 因此, 需要密切关注双助催化剂的开发, 以建立一个集优异的光活性和光稳定性于一体的光催化产氢体系.

本文系统地介绍了光催化产氢双助催化剂的类别、优势、合成方法和设计策略. 首先, 双助催化剂被分为双还原型(Red-Red)和还原-氧化型(Red-Ox)两类, 详细概述了在光催化产氢领域中还原型和氧化型助催化剂相互匹配后形成的双助催化剂的实例及其协同效应. 总结了在制氢体系中双助催化剂相对于单一助催化剂的五大优势: 促进载流子快速迁移、实现电子-空穴空间分离、提高产氢吸附/脱附动力学、提高催化剂光稳定性和阻断可逆反应. 随后, 概括了双助催化剂-半导体光催化剂的合成策略, 基于通常报道的水/溶剂热处理、煅烧、光沉积、自组装和化学沉积等助催化剂的合成方法, 可以采用一步法和两步法将两种助催化剂加载到半导体上, 获得三元复合材料. 探讨了双助催化剂-半导体光催化体系的设计策略, 详细总结了如何设计具有优化电子传递路径的Red-Red助催化剂体系和具有空间分离电荷的Red-Ox助催化剂体系. 其中, 为了优化电子传递路径, 两种还原型助催化剂的位置关系可分为三类: 核壳包裹结构、分散分布结构和相邻结构; 为了实现氧化/还原位点空间分离, 氧化-还原型双助催化剂在半导体表面可设计为三种结构: 内外结构、晶面相关结构和端侧结构. 最后, 提出了双助催化剂在光催化制氢领域中的现状、挑战及未来发展方向.

在未来, 可以继续开发新型无贵金属助催化剂来降低催化剂体系总成本, 真正达到经济实用目标; 需要继续发展利于规模化生产的双助催化剂三元复合材料的合成策略; 需要通过实验表征, 结合同位素标记法、分子模拟和密度泛函理论计算, 深入研究助催化剂的性质和作用机理. 希望本文能够为构建高效实用的双助催化剂三元析氢光催化体系提供借鉴.

关键词: 双助催化剂, 异质结, 电荷载流子动力学, 光催化, 产氢

Abstract:

To enable a low-carbon economy, it is vital to develop clean and renewable energy sources such as hydrogen energy. One promising strategy is to sustainably generate H2 by solar-driven photocatalytic water splitting using semiconductors. However, the bottleneck in the industrialization of photocatalysis technology lies in the high recombination rate of photogenerated charge carriers in the semiconductors. Fortunately, introducing dual cocatalysts into the semiconductor can promote the development of three-phase interfaces that enable the efficient transfer of interfacial charges, thereby enhancing the photocatalytic H2-evolution efficiency. In this review, we provide a detailed and systematic description of the development of ternary composite photocatalysts with high H2-evolution efficiencies by loading dual cocatalysts onto semiconductors. First, we categorize dual cocatalysts into two types: dual-reductive pairs and reductive-oxidative pairs, and then summarize four advantages of the dual-cocatalyst-based systems for H2 production. Subsequently, the synthesis strategies for dual cocatalyst-semiconductor photocatalysts and their design considerations are presented in detail. Finally, the current status, challenges, and future developmental directions of dual cocatalysts for photocatalytic H2 production are summarized.

Key words: Dual co-catalyst, Heterojunctions, Charge carrier dynamics, Photocatalysis, Hydrogen evolution