催化学报 ›› 2023, Vol. 54: 278-289.DOI: 10.1016/S1872-2067(23)64545-0

• 论文 • 上一篇    下一篇

在N掺杂碳纳米管/纳米线耦合超结构中原位固载CoNi纳米颗粒制备莫特-肖特基催化剂并用于高效电催化氧还原反应

夏苏为a,1, 周其兴a,1, 孙若栩a, 陈立章a, 张明义d, 庞欢e, 徐林a,*(), 杨军b,c, 唐亚文a,*()   

  1. a南京师范大学化学与材料科学学院, 江苏省生物医学功能材料协同创新中心, 江苏省新型动力电池重点实验室, 江苏南京210023
    b中国科学院过程工程研究所, 多相复杂系统国家重点实验室/介观科学研究中心, 北京100190
    c中国科学院大学材料科学与光电子工程中心, 北京100190
    d哈尔滨师范大学物理与电子工程学院, 光子与电子带隙材料教育部重点实验室, 黑龙江哈尔滨150025
    e扬州大学化学化工学院, 江苏扬州225009
  • 收稿日期:2023-09-01 接受日期:2023-10-18 出版日期:2023-11-18 发布日期:2023-11-15
  • 通讯作者: *电子邮箱: xulin001@njnu.edu.cn (徐林), tangyawen@njnu.edu.cn (唐亚文).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家自然科学基金(22272179);国家自然科学基金(21972068);国家自然科学基金(22072067);国家自然科学基金(22232004)

In-situ immobilization of CoNi nanoparticles into N-doped carbon nanotubes/nanowire-coupled superstructures as an efficient Mott-Schottky electrocatalyst toward electrocatalytic oxygen reduction

Suwei Xiaa,1, Qixing Zhoua,1, Ruoxu Suna, Lizhang Chena, Mingyi Zhangd, Huan Pange, Lin Xua,*(), Jun Yangb,c, Yawen Tanga,*()   

  1. aJiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China
    bState Key Laboratory of Multiphase Complex Systems and Center of Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    cCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
    dKey Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
    eSchool of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2023-09-01 Accepted:2023-10-18 Online:2023-11-18 Published:2023-11-15
  • Contact: *E-mail: xulin001@njnu.edu.cn (L. Xu); tangyawen@njnu.edu.cn (Y. Tang).
  • About author:1Contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(22272179);National Natural Science Foundation of China(21972068);National Natural Science Foundation of China(22072067);National Natural Science Foundation of China(22232004)

摘要:

设计开发可用于电催化氧还原反应(ORR)的高效催化剂对于推进可持续能源技术(如燃料电池和金属空气电池等)的进一步发展至关重要. 然而, 由于ORR涉及多电子转移过程, 并且动力学迟缓, 电位高, 从而限制了相关技术的实际应用. 到目前为止, 铂族金属被认为是ORR的基准电催化剂. 然而, 由于铂族金属资源稀缺、价格高、催化剂稳定性不足阻碍了其在不同能源装置中的进一步应用. 因此, 亟需开发出高活性、低成本、耐用的ORR电催化剂, 从而推进可再生能源技术的进一步发展. 双金属纳米合金因具有良好的导电性、可调整的电子态且金属间存在协同效应而被认为是一种有较大应用前景的ORR催化材料.

本文采用自我牺牲模板法, 将均匀的CoNi合金纳米颗粒原位封装在N掺杂碳纳米管/纳米线耦合的分层结构中, 构建了莫特-肖特基电催化剂(CoNi@N-CNT/NWs), 并应用于金属空气电池. 采用X射线衍射、拉曼光谱、热重、BET比表面积测试、X射线光电子能谱、扫描电子显微镜和透射电镜等方法对催化剂进行了表征. 扫描电子显微镜和透射电镜结果表明, 复合材料呈现一维多级结构的纳米管分支/纳米线主干的层次结构. 实验结果和理论计算表明, CoNi纳米合金与N掺杂碳纳米管/纳米线的整流接触可以诱导自驱动电荷在莫特-肖特基异质结上转移, 从而提高了电子转移效率并调节电荷分布. 此外, 碳分支/主干型分层结构作为支架的建立, 增加了CoNi@N-CNT/NWs材料中活性位点的暴露, 避免了材料堆积或聚集, 进而提高了机械稳定性, 缩短了传质扩散的路径并提高了气体传质的速率. 得益于结构和电子优势, CoNi@N-CNT/NWs具有较好的ORR性能, 其半波电位(E1/2)为0.86 V, 在0.1 mol L-1 KOH电解质中表现出较好的稳定性. 采用CoNi@N-CNT/NWs电催化剂组装的锌空电池可以实现较高的开路电压、高峰值功率密度以及大比容量和持久的循环性能, 在不同ORR相关的能源装置中展示出良好的应用前景.

综上所述, 金属空气电池是未来最具有潜力的能源转换器件之一, 双金属纳米合金的精细设计和结构调控将为氧还原催化剂的可控制备和性能优化提供新思路.

关键词: CoNi合金, 碳纳米管, 碳纳米线, 氧还原反应, 锌空气电池

Abstract:

The ingenious design and feasible fabrication of affordable, active and robust electrocatalysts toward the oxygen reduction reaction (ORR) is imperative importance for the advancement of advanced sustainable energy technologies. The electronic structure modulation via the establishment of Mott- Schottky heterojunctions offers a powerful leverage to realize the boosted electrocatalytic intrinsic activity, yet remaining challenging. Herein, an ingenious self-sacrificial template strategy is developed for the fabrication of an advanced hybrid Mott-Schottky electrocatalyst composed of CoNi alloyed nanoparticles in-situ implanted within N-doped carbon nanotube/nanowire-integrated hierarchical superstructures (CoNi@N-CNT/NWs). The combinations of experimental and theoretical studies demonstrate that the rectifying contact of CoNi nanoalloys and N-CNT/NWs can induce the self- driven charge transfer across the Mott-Schottky heterojunctions, giving rise to the improved electron transfer rate, reconfigured charge distribution, and boosted intrinsic activity. Moreover, the “branches”/“trunk”- structured carbon substrates can offer the tight structural interconnectivity and highly accessible channels for active site exposure, thus dramatically facilitating the mass transfer during the electrocatalytic process. As anticipated, the as-prepared CoNi@N-CNT/NWs exhibit prominent ORR performance with a half-wave potential (E1/2) of 0.86 V and exceptional long-term stability in 0.1 mol L-1 KOH. The innovational manipulation of electronic state via the of Mott-Schottky heterojunctions can enlighten the rational design of electrocatalysts with excellent performance.

Key words: CoNi alloy, Carbon nanotubes, Carbon nanowires, Oxygen reduction reaction, Zn-air batteries