催化学报 ›› 2023, Vol. 54: 199-211.DOI: 10.1016/S1872-2067(23)64540-1

• 论文 • 上一篇    下一篇

具有丰富晶界的铜催化剂在气-液平衡扩散电极上高效电还原CO2制C2H4

卞磊, 张紫阳, 田昊, 田娜娜, 马智, 王中利*()   

  1. 天津大学化工学院, 天津市应用催化科学与工程重点实验室, 天津300072
  • 收稿日期:2023-08-21 接受日期:2023-10-17 出版日期:2023-11-18 发布日期:2023-11-15
  • 通讯作者: *电子信箱: wang.zhongli@tju.edu.cn (王中利).
  • 基金资助:
    国家自然科学基金(22075201);国家重点研发计划(2022YFB4101800)

Grain boundary-abundant copper nanoribbons on balanced gas-liquid diffusion electrodes for efficient CO2 electroreduction to C2H4

Lei Bian, Zi-Yang Zhang, Hao Tian, Na-Na Tian, Zhi Ma, Zhong-Li Wang*()   

  1. Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received:2023-08-21 Accepted:2023-10-17 Online:2023-11-18 Published:2023-11-15
  • Contact: *E-mail: wang.zhongli@tju.edu.cn (Z.-L. Wang).
  • Supported by:
    National Natural Science Foundation of China(22075201);National Key Research and Development Program of China(2022YFB4101800)

摘要:

电催化二氧化碳还原反应(CO2RR)可以将二氧化碳转化为具有高经济价值的碳氢化合物, 被认为是实现碳中和并缓解能源危机的一种有潜力的技术. 铜(Cu)作为一种最有应用前景的非贵金属催化剂之一, 表现出较高的催化CO2RR转化为多碳产物(C2+)的活性. 然而, 电催化CO2还原成C2+产物涉及一个动力学过程缓慢的C-C偶联反应, 这导致C2+产物的选择性较低, 电流密度低, 阻碍了其在工业电解槽中的实际应用. 同时, CO2RR产物的选择性不仅取决于热力学速率决定步骤, 还取决于传质控制动力学. CO2RR发生在固-气-液三相反应界面, 气-液的平衡扩散可以有效抑制析氢竞争反应, 进而提高CO2RR的反应效率.

本文设计合成了一种富晶界的Cu纳米带催化剂, 并构建了气-液平衡扩散的电极结构, 用于高效电催化二氧化碳还原制备乙烯(C2H4). 以一种碱式碳酸铜(Cu2CO3(OH)2)纳米带为前驱体, 在原位电化学还原条件下, 前驱体中的Cu2+离子获得电子被还原为金属Cu, 而释放的CO32-和OH-混合阴离子调节金属Cu的生长. 生成的Cu纳米带由细小的纳米颗粒堆积而成, 并暴露出大量的由Cu(111), Cu(200)和Cu(220)晶面形成的富晶界结构(GBs). 同时, 在CO2RR测试中发现催化剂层的厚度是影响CO2和电解质传质的关键因素. 通过调整催化层厚度, CO2和电解质可以同时到达催化剂表面, 参与到CO2RR中, 实现了气-液平衡扩散, 有效抑制了氢析出副反应. 在晶界效应和气-液平衡扩散的协同作用下, 优化后的电极在电流密度为700 mA cm-2时, 对C2H4和C2+产物的法拉第效率分别高达67.2%和82.1%. 此外, C2H4的部分电流密度可高达505 mA cm-2, 高于大多数文献报道的结果. 原位拉曼光谱和衰减全内反射表面增强红外吸收光谱结果表明, 丰富的晶界结构增强了CO2在催化剂表面的活化, 显著促进了*CO中间体的形成和吸附, 加速了C-C偶联过程形成*OCCO和*OCCOH中间体, 提高了C2H4和其他C2+产物的产率.

综上, 本文设计了一种高活性Cu催化剂和电极结构, 为高效电催化CO2还原为C2H4等C2+产物提供参考.

关键词: 电催化二氧化碳还原, 乙烯, C2+产物, 晶界, 气-液扩散

Abstract:

The electrocatalytic CO2 reduction reaction (CO2RR) is a promising technology to produce value-added hydrocarbon chemicals, however, achieving a high selectivity to C2+ products at the industrial current density remains a great challenge. Herein, we demonstrate grain boundary-abundant copper (Cu) nanoribbons on balanced gas-liquid diffusion electrodes for efficient CO2RR to ethylene (C2H4). The Cu(II) carbonate basic (Cu2CO3(OH)2) nanoribbon is used as a precursor to convert into metal Cu under in situ electrochemical reduction. Unexpectedly, the generated Cu nanoribbon is formed by stacking tiny nanoparticles with exposure of Cu(111), Cu(200) and Cu(220) facets, which creates abundant grain boundaries (GBs). During CO2RR test, the thickness of the catalyst layer is identified as a crucial factor for the mass transfer of CO2 and electrolyte. By tailoring the thickness of catalytic layer, CO2 and electrolyte can simultaneously reach the surface of catalyst and participate in CO2RR. Under the synergetic effects of GBs and balanced gas-liquid diffusion, the optimized electrode delivers the Faradaic efficiencies toward C2H4 and C2+ products as high as 67.2% and 82.1% at the current density of 700 mA cm-2, respectively. Moreover, the partial current density of C2H4 can reach up to 505 mA cm-2, which is significantly higher than most reported results. The in situ Raman and attenuated total reflection surface-enhanced infrared absorption spectra show that abundant GBs enhance the activation of CO2 and significantly promote the formation and adsorption of *CO intermediates, which accelerate C-C coupling to form *OCCO and *OCCOH intermediates and improve the production of C2H4 and other C2+ products.

Key words: Electrochemical CO2 reduction, Ethylene, C2+ product, Grain boundary, Gas-liquid diffusion