催化学报 ›› 2024, Vol. 57: 59-67.DOI: 10.1016/S1872-2067(23)64589-9

• 论文 • 上一篇    下一篇

单纳米粒子表面的甲醇电催化氧化过程

周湘淇a,e,1, 李丽丽d,1, 王俊刚b,*(), 李展波c, 邵希吉f, 程付鹏a, 张林娟a,h, 王建强a,h, Akhil Jaing, 林涛c,*(), 静超a,h,*()   

  1. a中国科学院上海应用物理研究所, 中国科学院微观界面物理与探测重点实验室, 上海 201800, 中国
    b上海应用技术大学化学与环境工程学院, 上海 201418, 中国
    c深圳技术大学新材料与新能源学院, 广东深圳 518118, 中国
    d山东大学晶体材料国家重点实验室, 晶体材料研究院, 山东济南 250100, 中国
    e湖南师范大学化学化工学院, 化学生物学及中药分析教育部重点实验室, 湖南长沙 410081, 中国
    f韶关学院智能工程学院物理系, 广东韶关 512005, 中国
    g诺丁汉大学药学院, 再生医学与细胞诊疗生物电子实验室, 诺丁汉, 英国
    h中国科学院大学, 北京 100049, 中国
  • 收稿日期:2023-11-22 接受日期:2023-12-21 出版日期:2024-02-18 发布日期:2024-02-10
  • 通讯作者: * 电子信箱: jgwang@sit.edu.cn (王俊刚),lintao@sztu.edu.cn (林涛),jingchao@sinap.ac.cn (静超).
  • 作者简介:1共同第一作者.
  • 基金资助:
    中国科学院洁净能源先导科技专项(XDA2100000);国家自然科学基金(21802042);国家自然科学基金(21902050);国家自然科学基金(22374101);国家自然科学基金(22209201);上海市扬帆计划(18YF1405700);上海市扬帆计划(21YF1456100);王宽诚教育基金会(GJTD-2018-10);中国科学院青年创新促进会(Y201842);中国科学院青年创新促进会(2023270);中国科学院创新研究院合作基金(DNL202008);深圳技术大学新引进高端人才财政补助科研启动经费(2019210);韶关学院科研启动费(440/9900064706);英国工程和物理科学研究委员会(EP/R004072/1)(EP/R004072/1)

Unraveling the electro-oxidation steps of methanol on a single nanoparticle by in situ nanoplasmonic scattering spectroscopy

Xiangqi Zhoua,e,1, Lili Lid,1, Jun-Gang Wangb,*(), Zhanbo Lic, Xiji Shaof, Fupeng Chenga, Linjuan Zhanga,h, Jian-Qiang Wanga,h, Akhil Jaing, Tao Linc,*(), Chao Jinga,h,*()   

  1. aKey Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
    bSchool of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
    cCollege of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
    dState Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
    eKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China
    fDepartment of Physics, School of Intelligent Engineering, Shaoguan University, Shaoguan 512005, Guangdong, China
    gBioelectronics Laboratory, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
    hUniversity of Chinese Academy of Sciences, Beijing, 100049, China
  • Received:2023-11-22 Accepted:2023-12-21 Online:2024-02-18 Published:2024-02-10
  • Contact: * E-mail: jgwang@sit.edu.cn (J.-G. Wang), lintao@sztu.edu.cn (T. Lin), jingchao@sinap.ac.cn (C. Jing).
  • About author:1 Contributed equally to this work.
  • Supported by:
    “Transformational Technologies for Clean Energy and Demonstration,” Strategic Priority Research Program of the Chinese Academy of Sciences(XDA2100000);National Science Foundation of China(21802042);National Science Foundation of China(21902050);National Science Foundation of China(22374101);National Science Foundation of China(22209201);Shanghai Sailing Program(18YF1405700);Shanghai Sailing Program(21YF1456100);K. C. Wong Education Foundation(GJTD-2018-10);Youth Innovation Promotion Association, Chinese Academy of Sciences(Y201842);Youth Innovation Promotion Association, Chinese Academy of Sciences(2023270);DNL Cooperation Fund, CAS(DNL202008);Natural Science Foundation of Top Talent of SZTU(2019210);Startup Funding from Shaoguan University(440/9900064706);Engineering and Physical Sciences Research Council, UK (EP/R004072/1 to Dr Frankie Rawson which funded the post-doc position of Dr Akhil Jain)(EP/R004072/1)

摘要:

由于全球资源短缺和环境污染等问题日益加剧, 开发利用洁净高效的新能源已成为当今社会研究热点. 其中, 直接甲醇燃料电池(DMFC)具有低温启动、无需重整制氢、洁净环保和体积小巧等特性, 展现出较好的应用前景. DMFC的阳极反应为甲醇氧化反应, 甲醇的完全氧化涉及到复杂的六步电子转移反应过程. 揭示甲醇氧化的反应路径与机理, 阐明催化剂的真实活性中心以及毒化效应, 对于高效催化剂的设计和制备至关重要. 随着纳米技术的发展, 在单颗粒水平对纳米催化剂进行表征受到了越来越多的关注. 因此, 亟需发展具有高灵敏度的原位界面表征方法, 实现纳米尺度的精准测量, 排除催化剂平均效应, 获取纳米表界面真实的催化反应信息.

本文结合纳米等离子共振散射光谱与电化学技术, 获得了单个纳米催化剂的同步光电响应信号, 实现单颗粒水平纳米粒子表面化学、电化学反应过程(如电荷转移、分子吸附等)的高灵敏监测, 揭示纳米尺度表界面催化反应机制. 利用这一技术, 动态监测了单个金/铂包金纳米颗粒表面的甲醇氧化过程. 结果表明, 在金纳米颗粒表面, 甲醇氧化主要通过HCOOH路径, 生成产物为HCOOH或CO2. 其中, 反应中间体与羟基离子的竞争性吸附起到重要作用, 反应决速步为Au-OH和Au-CHO的共吸附. 而铂催化甲醇氧化主要经过CO路径, 决速步为Pt-OH和Pt-CO氧化生成Pt-COOH过程. 此外, 观测到金和铂氢氧化物为催化反应的活性物种, 进一步证实了金属氧化物对于催化活性的钝化作用. 结合密度泛函理论模拟, 明确了甲醇氧化反应中间体吸附与金属氢氧化物演变之间的内在联系.

综上, 本文利用纳米等离子共振散射光谱, 原位监测了单个纳米粒子表面的甲醇电催化氧化过程, 实现了催化剂真实活性物种演变与失活过程的直接观测, 揭示了不同催化剂表面的决速步骤, 为提高催化反应效率提供了更加准确的反应信息. 本文将有益于纳米等离子共振散射光谱在电催化反应高灵敏监测方面的广泛应用, 并为高效甲醇催化剂的制备提供参考.

关键词: 单个纳米粒子检测, 暗场显微镜, 等离子体共振散射光谱, 甲醇氧化反应, 纳米电化学

Abstract:

Understanding the mechanism of methanol oxidation reaction (MOR) remains a challenge in the development of direct methanol fuel cells. Large-scale investigations of the MOR encounter issues related to mass transfer and averaging effects. To address these limitations, exploring the MOR on the surfaces of individual nanocatalyst and precisely identifying the reaction steps can yield valuable insights into the underlying pathways. In this study, we employed in situ nanoplasmonic resonance scattering spectroscopy to dynamically monitor the MOR process on single gold nanorod particles (GNPs) and Pt-coated gold nanoparticles (Pt-GNPs). We observed the evolution of metal hydroxides, which was assumed as the active species. Notably, the dynamic behavior of the surface atomic layers revealed the rate-determining steps for both the GNPs and Pt-GNPs, indicating competitive adsorption of intermediates on the nanocatalyst surface. The resulting inherent reaction mechanism highlights the thermodynamics-dependent catalysts’ redox processes and their surface adsorptions, which holds significance for advancing highly active MOR catalysts.

Key words: Single nanoparticle detection, Dark-field microscopy, Plasmon resonance scattering, spectroscopy, Methanol oxidation reaction, Nano-electrochemistry