催化学报 ›› 2024, Vol. 60: 107-127.DOI: 10.1016/S1872-2067(23)64640-6

• 综述 • 上一篇    下一篇

电催化还原氮制氨的最新进展

海广通a,b,*(), 富忠恒c, 刘欣d,*(), 黄秀兵e,*()   

  1. a浙江大学衢州研究院, 浙江衢州 324000, 中国
    b清华大学化工系, 膜技术与工程研究中心, 北京 100084, 中国
    c北京科技大学新材料与技术研究所, 北京材料基因工程高精尖创新中心, 北京 100083, 中国
    d加拿大国立科学研究院, 能源材料通讯中心, 瓦雷纳斯, 加拿大
    e北京科技大学材料科学与工程学院, 北京材料基因组工程高精尖创新中心, 北京 100083, 中国
  • 收稿日期:2024-01-24 接受日期:2024-02-29 出版日期:2024-05-18 发布日期:2024-05-20
  • 通讯作者: 电子信箱: hgt@tsinghua.edu.cn (海广通), xin.liu@inrs.ca (刘欣), xiubinghuang@ustb.edu.cn (黄秀兵).
  • 基金资助:
    浙江大学衢州研究院研究经费(IZQ2023RCZX032);清华大学博士后基础研究基金(100415017)

Recent progress in electrocatalytic reduction of nitrogen to ammonia

Guangtong Haia,b,*(), Zhongheng Fuc, Xin Liud,*(), Xiubing Huange,*()   

  1. aInstitute of Zhejiang University-Quzhou, Zhejiang University, Quzhou 324000, Zhejiang, China
    bBeijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
    cBeijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
    dCentre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
    eBeijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2024-01-24 Accepted:2024-02-29 Online:2024-05-18 Published:2024-05-20
  • Contact: E-mail: hgt@tsinghua.edu.cn (G. Hai), xin.liu@inrs.ca (X. Liu), xiubinghuang@ustb.edu.cn (X. Huang).
  • About author:Guangtong Hai (Institute of Zhejiang University-Quzhou, Zhejiang University) received his Ph.D. from the University of Science and Technology Beijing in 2021. From 2021 to 2023, he worked as a post-doctoral researcher at Tsinghua University. In November 2023, he joined the Institute of Zhejiang University-Quzhou as an associate researcher. His research interests include high-throughput theoretical screening, precise controlled synthesis and gas separation applications of nanoporous materials. So far, he has published more than 30 papers in academic journals such as Coordination Chemistry Reviews, Nano Energy, Small Methods, Advanced Function Materials, ACS Catalysis, Applied Catalysis B: Environmental, Chemical Science, Chemical Engineering Journal, iScience, Journal of Colloid and Interface Science, AIP Advances, and has been cited more than 1200 times with the H-index of 19. He has applied for 2 national invention patents as the first inventor and 4 software Copyrights have been applied (authorized) as the first author or corresponding author.
    Xin Liu (Institut national de la recherche scientifique) received her PhD degree from Centre Énergie Matériaux Télécommunications (EMT) at Institut national de la recherche scientifique (INRS) in 2023. Her expertise lies in the synthesis of low dimensional nanomaterials and their utilization in harnessing solar energy for electricity generation and water splitting. Currently, she is a visiting postdoctoral scholar in EMT-INRS. Her current research direction involves the study of nanostructured materials for electrolysis to produce high-valued chemicals and fuels.
    Xiubing Huang (University of Science and Technology Beijing) received his BE (2008) and ME (2011) from the University of Science and Technology Beijing, and his Ph.D. from the University of St Andrews (UK) in 2015. He spent one year working at the Research Centre for Materials Science of Nagoya University (Japan) as a postdoctoral fellow. He spent nine months (2019‒2020) as a visiting scholar at the research group of Prof. Martin Muhler at Ruhr-University Bochum (Germany). Currently, he is a professor at the School of Materials Science and Engineering at the University of Science and Technology Beijing. His current research focuses on rational design and controllable synthesis of nanostructured catalysts.
  • Supported by:
    Research Funds of Institute of Zhejiang University-Quzhou(IZQ2023RCZX032);Postdoctoral basic research funds at Tsinghua University(100415017)

摘要:

氮还原反应在生态系统、农业系统和工业氮循环中发挥着至关重要的作用. 然而, 由于氮气在水中的溶解度低, N≡N三键结构稳定, 且存在与析氢反应的激烈竞争, 因此目前电化学氮还原反应面临着产率缓慢、法拉第效率低等挑战. 尽管研究者们通过不懈的努力已经在该领域取得了显著的进展, 但距离其实际应用仍有较大差距. 因此, 如何通过多方面的调控手段, 尽早实现人工固氮的工业化生产, 成为当前该领域亟待解决的关键问题.

本文系统梳理了电催化还原氮制氨的最新进展. 首先, 对NRR的机理进行了全面介绍. 详细介绍了五种备受关注的氮还原机理: 解离机理、结合机理、交替机理、酶促机理以及最新发现的马尔斯-范克雷维伦机理. 通过对比电催化氮还原与哈珀法催化氮还原的反应机理, 阐明了电催化氮还原的优势. 然后, 总结了该领域最新的研究进展. 详细介绍了高性能氮还原催化剂的最新设计开发成果, 基于近五年的相关报道, 重点介绍了Mo基催化剂、Cu基催化剂、Ru基催化剂、Bi基催化剂和Fe基催化剂的研究进展. 此外, 对其他过渡金属基催化剂和非金属催化剂也进行了评述和展望, 并对不同催化剂的优缺点进行了系统的比较. 随后, 对新型氮还原反应装置的研究进展进行了综述. 讨论了新型反应器对缓解氮分子低溶解度这一问题的关键作用, 强调了研发新型氮还原反应装置对提升电催化氮还原性能的重要性. 在NRR反应路径的调控和优化方面, 本文总结了最新的研究成果, 特别是Li介导的氮还原反应的重要意义, 证实了反应路径的调控优化是提升氮还原性能的有效手段. 更为重要的是, 从目前最新的研究成果出发, 提出了氮还原性能的提升需要多方面的协同调控, 单一的优化手段难以突破现有的瓶颈, 这为后续的研究提供了重要参考. 在展望部分, 强调了氮还原领域目前面临的挑战并讨论了未来的研究方向.

综上, 本文系统地总结了近年来的研究进展, 包括高性能催化剂、新型反应设备以及氮还原反应路径的调控和优化. 提升氮还原反应的整体性能需要多方面的协调调控, 仅关注催化剂很难取得重大突破. 本文旨在为氮还原催化剂和反应器的设计以及反应路径的调控优化提供参考.

关键词: 氮还原反应, 电催化, 催化剂, 反应设备, 反应途径

Abstract:

Nitrogen reduction reaction (NRR) plays a vital role in the nitrogen cycling within ecosystems, agricultural systems, and industrial applications. Suffering from the low solubility of nitrogen (N2), high stability of N≡N triple bond and severe competitive hydrogen evolution reaction (HER), electrochemical NRR currently faces several problems such as sluggish yield rate and low Faraday efficiency (FE). So far, dedicated endeavors have led to significant advancements in NRR, but it is still far from satisfactory now. In this comprehensive review, we systematically consolidate recent advancements in electrochemical NRR, including high-performance NRR catalysts, innovative NRR reaction equipment, and the regulation and optimization of NRR reaction pathways. More importantly, from the reported researches, we proposed that the improvement of NRR performance required coordinated regulation from many aspects, and the unitary aspect of optimization is difficult to break through the existing bottleneck. Therefore, unlike other recent reviews, we didn’t discuss in chronological order here, but with three subsections according to these aspects. In the outlook section, we highlighted the existing challenges within the NRR field. This review would serve as a guiding framework for the strategic design of catalysts and devices in NRR, while also contributing to the refinement and optimization of NRR mechanisms.

Key words: Nitrogen reduction reaction, Electrocatalysis, Catalyst, Reaction equipment, Reaction pathway