催化学报 ›› 2024, Vol. 60: 1-24.DOI: 10.1016/S1872-2067(23)64637-6

• 述评 •    下一篇

光解水制氢催化剂的掺杂改性

房文健a,e, 严嘉玮a, 韦之栋a,b, 刘军营c, 郭伟琦d, 江治a, 上官文峰a,*()   

  1. a上海交通大学燃烧与环境技术研究中心, 上海 200240
    b上海交通大学智慧能源创新学院, 上海 200240
    c江苏大学环境与安全工程学院, 江苏镇江 212013
    d中国华能集团清洁能源技术研究院有限公司, 北京 102209
    e扬州大学电气与能源动力工程学院, 江苏扬州 225002
  • 收稿日期:2023-12-05 接受日期:2024-02-10 出版日期:2024-05-18 发布日期:2024-05-20
  • 通讯作者: 电子信箱: shangguan@sjtu.edu.cn (上官文峰).
  • 基金资助:
    国家重点研发计划(2018YFB1502001);国家自然科学基金(21773153);国家自然科学基金(22102095);江苏省高等教育基础科学(自然科学)研究项目(23KJB480011);上海交通大学氢科学中心研究基金

Account of doping photocatalyst for water splitting

Wenjian Fanga,e, Jiawei Yana, Zhidong Weia,b, Junying Liuc, Weiqi Guod, Zhi Jianga, Wenfeng Shangguana,*()   

  1. aResearch Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240, China
    bCollege of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, China
    cBiofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
    dHuaneng Clean Energy Technology Research Institute, Beijing 102209, China
    eSchool of Electrical and Energy Power Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
  • Received:2023-12-05 Accepted:2024-02-10 Online:2024-05-18 Published:2024-05-20
  • Contact: E-mail: shangguan@sjtu.edu.cn (W. Shangguan).
  • About author:Wenfeng Shangguan (Shanghai Jiao Tong University) received his B.S. in 1983 and M.S. in 1988 from Wuhan University of Technology, and Ph.D degree in 1996 from Nagasaki University, Japan. He carried out postdoctoral research at the Kyushu Institute of Industrial Technology in Japan from 1996 to 2000. Since April 2000, he has been working in the School of Mechanical and Power Engineering at Shanghai Jiao Tong University as a professor. His research interests include environment catalysis and photocatalysis, solar hydrogen production and air quality controlling. He has published more than 200 peer-reviewed papers and secured over 30 invention patents. He has published 7 books including monographs and translations. He is in the list of the Most Cited Chinese Researchers by Elsevier China from 2014 to 2023. He received the First Prize of the Shanghai Natural Science Award and the National Baosteel Excellent Teachers Award. He is involved in various academic roles, serving as a Member of the Catalysis Committee of the Chinese Chemical Society and holding Editorial Board positions at journals such as the Journal of Environmental Science and Frontiers in Energy.
  • Supported by:
    National Key Basic Research and Development Program(2018YFB1502001);National Natural Science Foundation of China(21773153);National Natural Science Foundation of China(22102095);Basic Science (Natural science) research project of higher education in Jiangsu Province(23KJB480011);Centre of Hydrogen Science of Shanghai Jiao Tong University, China

摘要:

光催化分解水制氢, 作为一种绿色、安全、高效且低成本的制氢技术, 因其清洁性和巨大的发展潜力而受到广泛关注. 尽管光催化分解水制氢在理论上具有显著优势, 但在实际应用中仍面临捕光效率低、电荷分离难、表面反应速率慢以及光腐蚀等挑战. 为解决上述问题并突破效率瓶颈, 研究者们积极探索新的方法, 如构建异质结、调控微观结构、引入助催化剂、掺杂和诱导缺陷等, 以期提高光催化剂的性能. 其中, 光催化剂掺杂改性是研究热点之一. 通过对光催化剂进行掺杂改性, 可以有效调节其能带结构、光吸收性能以及电荷传输性能, 进而提升光催化分解水制氢的效率. 因此, 对光催化剂掺杂在光催化分解水制氢中的作用机制和研究进展进行系统地梳理和总结, 有助于深化对该领域的理解, 具有重要意义.

本文系统地介绍了近年来本课题组利用掺杂改性光催化剂提升光解水制氢性能的研究成果. 首先, 总结了光催化剂掺杂的合成方法和表征手段, 并详细介绍了用于分析掺杂离子在催化剂中的分布及价态的原位表征方法. 其次, 以铋基复合氧化物为例, 介绍了通过固溶法将稀土元素掺杂到铋基复合氧化物中, 实现可见光下完全分解水, 并探讨了掺杂对光催化剂能带结构的影响及作用机制. 进一步, 阐述了掺杂后铋基复合氧化物微观结构的变化, 特别是暴露面、表面特性和缺陷态等对光生载流子分离与迁移的影响, 归纳了掺杂诱导的结构变化与光催化分解水制氢性能之间的构效关系. 此外, 介绍了一种新颖的多局域梯度掺杂方法: 利用离子扩散使预先储存掺杂离子的“纳米胶囊”持续、非均匀地释放入半导体材料中, 诱导导带位置连续弯曲, 从而在导带势能面内构建出多局域的势阱, 从而延长了光生电子空穴对的寿命, 为光生载流子提供了更多迁移至表面的通道, 明显提高了光解水效率. 最后, 展望了光催化剂掺杂技术未来的研究方向: (1) 通过对光催化分解水制氢中的析氢和析氧助催化剂进行掺杂改性, 提高表面催化反应速率; (2) 发展纳米催化剂上的非对称掺杂技术, 在纳米颗粒内的特定区域或表面掺杂的精确调控, 以提高光催化分解水制氢性能; (3) 随着机器学习的进步, AI模型可以用于预测和优化掺杂条件, 从而大幅减少实验量. 

综上, 本文总结了掺杂在光催化分解水制氢研究中的研究进展, 希望能为探索开发可见光光催化水分解的新型材料和提高能量转换效率提供参考和借鉴.

关键词: 光催化, 水分解, 氢, 掺杂, 能带结构, 非对称掺杂

Abstract:

In the field of photocatalytic water splitting, the strategy of doping photocatalysts has emerged as a significant and extensively studied approach. Doping can effectively facilitate the modification of both the microstructure and energy band structure of the photocatalyst, addressing key performance limitations such as light absorption, position of the conduction and valence band minima (CBM and VBM), photogenerated carrier separation, and surface chemical reactions. In recent years, we have reported several works about the doping of rare earth elements into bismuth-based composite oxides. These endeavors are aimed at enhancing the conduction band minimum and achieving overall water splitting under visible light. Based on these bismuth-based composite oxides, we studied the effects of doping on the microstructures of photocatalysts, including exposed surfaces, surface properties, and defects. Recently, we introduce an innovative asymmetric doping technique—Selected Local Gradient Doping, intricately placing doped ions within nanocapsules. This approach allows for the gradual, controlled, and localized release of doped ions to the primary photocatalyst. Therefore, this account is to review our related research in the field of doping for photocatalytic water splitting. The primary focus on doping bismuth-based composite oxides and Asymmetry doping would significantly make contribution to the exploration of novel materials for photocatalytic water splitting under visible light and the enhancement of energy conversion efficiency.

Key words: Photocatalysis, Water splitting, Hydrogen, Doping, Energy band structure, Asymmetric doping