催化学报 ›› 2024, Vol. 60: 209-218.DOI: 10.1016/S1872-2067(23)64644-3

• 论文 • 上一篇    下一篇

簇-金属氧化物助剂电子相互作用调控的Ru原子簇催化剂用于温和条件下合成氨反应

张天华a, 胡海慧b, 李嘉欣a, 高迎龙a, 李玲玲a,*(), 张明远a, 彭渲北a, 周岩良a, 倪军a, 林炳裕a, 林建新a, 朱兵c, 吴冬霜c, 张林杰d, 韩丽丽d, 郑黎荣e, 王秀云a,*(), 江莉龙a,*()   

  1. a福州大学化肥催化剂国家工程研究中心, 福建福州 350002, 中国
    b福州大学化学学院, 福建福州 350002, 中国
    c南洋理工大学材料科学与工程学院, 新加坡 639798, 新加坡
    d中国科学院福建物质结构研究所, 结构化学国家重点实验室, 福建福州 350002, 中国
    e中国科学院高能物理研究所, 北京 100049, 中国
  • 收稿日期:2024-02-06 接受日期:2024-02-26 出版日期:2024-05-18 发布日期:2024-05-20
  • 通讯作者: 电子邮箱: lll@hebut.edu.cn (李玲玲), xywangfzu@163.com (王秀云), jll@fzu.edu.cn (江莉龙).
  • 作者简介:第一联系人:1共同第一作者.
  • 基金资助:
    国家重点研发计划(2021YFB4000400);国家重点研发计划(2022YFA1604101);国家自然科学基金(22222801);国家自然科学基金(22038002);国家自然科学基金(92361303);国家自然科学基金(22108037)

Tuning clusters-metal oxide promoters electronic interaction of Ru-based catalyst for ammonia synthesis under mild conditions

Tianhua Zhanga, Haihui Hub, Jiaxin Lia, Yinglong Gaoa, Lingling Lia,*(), Mingyuan Zhanga, Xuanbei Penga, Yanliang Zhoua, Jun Nia, Bingyu Lina, Jianxin Lina, Bing Zhuc, Dongshuang Wuc, Linjie Zhangd, Lili Hand, Lirong Zhenge, Xiuyun Wanga,*(), Lilong Jianga,*()   

  1. aNational Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, Fujian, China
    bCollege of Chemistry, Fuzhou University, Fuzhou 350002, Fujian, China
    cSchool of Materials Science & Engineering (MSE) College of Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore
    dState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
    eInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-02-06 Accepted:2024-02-26 Online:2024-05-18 Published:2024-05-20
  • Contact: E-mail: lll@hebut.edu.cn (L. Li), xywangfzu@163.com (X. Wang), jll@fzu.edu.cn (L. Jiang).
  • About author:First author contact:1Contributed equally to this work.
  • Supported by:
    National key research and development program(2021YFB4000400);National key research and development program(2022YFA1604101);National Natural Science Foundation of China(22222801);National Natural Science Foundation of China(22038002);National Natural Science Foundation of China(92361303);National Natural Science Foundation of China(22108037)

摘要:

氨是重要的化肥原料, 也是颇具潜力的氢能源载体, 对于可再生能源的储存、运输和终端利用至关重要. 然而, 传统Haber-Bosch工艺合成氨的反应条件苛刻, 需要高温高压条件, 并消耗大量化石能源及排放大量二氧化碳. 可再生能源电解水制氢耦合温和合成氨新技术(eHB), 不仅能实现可再生能源电力的“消纳和调峰”, 而且可进行低成本、跨地域长距离存储运输, 并可将“绿氨”与氢能产业相结合. 然而, 现有的高温高压合成氨催化剂与eHB工艺相不匹配, 因此, 迫切需要开发温和条件下高效合成氨催化剂技术, 以实现可再生能源电力电解制氢体系和合成氨技术互补融合. 目前, 虽然助剂对于Ru基纳米簇(≥1 nm)合成氨催化剂的影响规律已得到了广泛研究, 但它们对于Ru原子簇催化剂的作用机制尚不清楚, 需要进一步揭示.

本文考察了Ba及Ce助剂对Ru原子簇催化剂的影响规律, 并分析了其作用机制. 首先, 通过简单的浸渍法将Ba和/或Ce物种掺杂到Ru原子簇催化剂(2 wt%Ru ACCs), 制得Ba/Ce/2 wt%Ru ACCs催化剂; 然后, 通过一系列实验考察了这些催化剂的合成氨性能, 并利用多种表征手段对其进行了深入分析. 合成氨性能测试结果表明, 添加Ba和Ce助剂后, 2 wt%Ru ACCs催化剂的合成氨速率明显提高, 在400  oC和1 MPa下, Ba/Ce/2 wt%Ru ACCs催化剂的合成氨反应速率达到56.2 mmolNH3 gcat‒1 h‒1, 是2 wt%Ru ACCs的7.5倍, 且催化剂表现出较好的稳定性, 在稳定运行140 h后活性未见明显降低. 球差校正电子显微镜和X射线吸收精细结构谱结果表明, 负载Ba和/或Ce后, Ru以Ru3原子簇形式存在. X射线吸收近边结构谱和X射线光电子能谱结果表明, Ru与Ba及Ce物种之间存在较强的簇-金属氧化物助剂电子相互作用, 可促进电子转移到Ru物种, 形成富电子状态的Ru, 进而促使电子转移到N2的π*反键轨道, 提高温和条件下合成氨反应速率. 利用25%N2+75%D2气氛下的原位红外光谱研究催化剂的合成氨反应机理, 结果表明, 在Ba/Ce/2 wt%Ru ACCs催化剂表面同时检测到N2D2物种和N2Dx物种的振动吸收峰, 说明添加Ba和/或Ce物种没有改变Ru原子簇催化剂活化N2的方式, N2仍是通过加氢的路径合成氨.

综上, 本文考察了助剂对Ru原子簇的影响规律, 揭示了其作用机制, 为设计高效的温和条件合成氨催化剂提供参考.

关键词: 原子簇, 助剂, N2活化, 合成氨, 电子相互作用

Abstract:

Ammonia (NH3) is an excellent candidate for hydrogen storage and transport. However, producing NH3 under mild conditions is a long-term, arduous task. Atomic cluster catalysts (ACCs) have been shown to be effective for catalytic N2-to-NH3 conversion, opening the door to the development of efficient catalysts under mild conditions. Still, ACC formation with thermally stable catalytic sites remains a challenge because of their high surface free energy. Herein, we report anchoring Ba and/or Ce onto Ru ACCs (2 wt% Ru atomic clusters supported on N-doped carbon) to form so-called clusters-metal oxide promoters electronic interaction (CMEI) to stabilize the Ru atomic clusters. The resulting Ba/Ce/Ru ACCs significantly boost the NH3 synthesis rate to 56.2 mmolNH3 gcat-1 h-1 at 400 °C and 1 MPa, which is 7.5-fold higher than that of Ru ACC. The strengthened CMEI between the Ba/Ce and Ru atomic clusters across the Ba/Ce/Ru ACC enables electron transfer from Ba and/or Ce to Ru atomic clusters. As such, the electron-enriched Ru atom could facilitate electron transfer to N≡N bond π* orbitals, which would weaken the N≡N bond and drive the eventual conversion of N2 to NH3. This study offers insight into the role of CMEI in Ru ACCs and provides an effective approach for designing stable atomic cluster catalysts for NH3 synthesis.

Key words: Atomic cluster, Promoter, N2 activation, Ammonia synthesis, Electronic interaction