催化学报 ›› 2024, Vol. 60: 25-41.DOI: 10.1016/S1872-2067(23)64642-X

• 综述 • 上一篇    下一篇

光催化二氧化碳还原制多碳产物的先进光催化剂设计与机制: 现状与挑战

杜晨宇a, 盛剑平a,b,*(), 钟丰忆a, 何烨a, 孙艳娟a, 董帆a,b,c,*()   

  1. a电子科技大学资源与环境学院, 四川成都 611731, 中国
    b中国气象局气候资源经济转化重点开放实验室, 重庆 401147, 中国
    c电子科技大学基础与前沿研究院, 碳中和与环境能源技术研究中心, 四川成都 611731, 中国
    d乌兹别克斯坦共和国科学院通用和无机化学研究所, 坦什干 100047, 乌兹别克斯
  • 收稿日期:2023-12-29 接受日期:2024-03-02 出版日期:2024-05-18 发布日期:2024-05-20
  • 通讯作者: 电子信箱: jpshengchn@163.com (盛剑平), dongfan@uestc.edu.cn/dfctbu@126.com (董帆).
  • 基金资助:
    国家自然科学基金(22361142703);国家自然科学基金(22225606);国家自然科学基金(22261142663);国家自然科学基金(22176029);中国气候学会气候资源向经济转化开放重点实验室(2023005K);四川科技厅项目(2021JDJQ0006)

Rational design and mechanistic insights of advanced photocatalysts for CO2-to-C2+ production: Status and challenges

Chenyu Dua, Jianping Shenga,b,*(), Fengyi Zhonga, Ye Hea, Vitaliy P. Gurod, Yanjuan Suna, Fan Donga,b,c,*()   

  1. aSchool of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
    bCMA Key Open Laboratory of Transforming Climate Resources to Economy, Chongqing 401147, China
    cResearch Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
    dInstitute of General and Inorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100047, Uzbekistan
  • Received:2023-12-29 Accepted:2024-03-02 Online:2024-05-18 Published:2024-05-20
  • Contact: E-mail: jpshengchn@163.com (J. Sheng), dongfan@uestc.edu.cn/dfctbu@126.com (F. Dong).
  • About author:Jianping Sheng received his Ph.D. degree in 2018 from the College of Chemistry and Chemical Engineering, Central South University, China. Currently, he is an associate professor at the School of Resources and Environment, University of Electronic Science and Technology of China. His current research interest is the design and synthesis of novel perovskite quantum dot-based catalysts for environment and energy photocatalysis..
    Fan Dong received his Ph.D. degree in 2010 from Zhejiang University. Currently, he is a full professor at the Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China. His research interest includes photocatalysis, environmental and energy catalysis.
  • Supported by:
    National Natural Science Foundation of China(22361142703);National Natural Science Foundation of China(22225606);National Natural Science Foundation of China(22261142663);National Natural Science Foundation of China(22176029);CMA Key Open Laboratory of Transforming Climate Resources to Economy(2023005K);Sichuan Science and Technology Program(2021JDJQ0006)

摘要:

在可持续碳资源利用的研究中, 光催化CO2转化为高附加值化学品的前景日益凸显. 相较于常见的CO2还原产物如甲烷、一氧化碳或甲酸, 具有两个或更多碳原子的C2+化合物因其具有更高的附加值而备受关注. 然而, 目前的研究面临着C-C偶联过程和多质子耦合电子转移效率的限制, 导致光催化CO2的还原反应产物主要为C1化合物. 常规光催化剂难以突破这些动力学和热力学壁垒, 导致目标产物C2+化合物的生成量远低于实际工业应用所需要的水平. 因此, 开发具有良好性能的光催化剂, 以实现C2+化合物的高效制备, 仍是当前面临的重要科学挑战.

本文系统性地概述了光催化CO2还原为C2+化合物领域的最新研究进展. 首先, 从光催化的基本原理及C2+产物的生成路径出发, 在光催化剂设计方面, 为突破C-C偶联和多质子耦合电子转移的限制, 需要解决以下问题: (1) 关键中间产物的生成与吸附转移; (2) 活性位点对于中间产物的选择性; (3) 光生电子的寿命与定向转移. 随后, 详细介绍了高效、高选择性光催化剂的合理设计策略, 包括缺陷工程、双金属位点、表面等离子体共振以及异质结构造等. 同时, 深入探讨了C-C偶联和多电子偶联的质子转移过程的催化机制. 最后, 展望了光催化CO2还原制C2+高附加值产物的未来研究方向, 催化剂设计与机制研究的关键方向包括: (1) 设计高选择性和高效吸附*CO中间体的活性位点, 以提升催化性能; (2) 设计具有轨道匹配的双活性位点以减少邻近*CO中间体间的静电排斥, 促进C-C耦合; (3) 从分子轨道相互作用角度深入理解C-C耦合和电子转移过程, 揭示反应机制; (4) 鉴别反应过程中的自由基组分, 阐明多质子耦合电子转移过程的机理.

综上所述, 本文系统地梳理了光催化CO2还原制C2+高附加值产物的研究进展、关键问题、催化剂设计原理以及未来研究方向, 旨在为开发设计高效、高选择性催化剂提供有益的参考.

关键词: CO2还原, C2+产物, 光催化, 活性位, 反应机理

Abstract:

Photocatalytic CO2 conversion into high-value chemicals is becoming an increasingly promising avenue of research in the quest for sustainable carbon resource utilization. Particularly, compounds with two or more carbons (C2+) have higher added value than methane, carbon monoxide, or formate, which are typically the major products of CO2 reduction. In this review, we present a detailed account of recent advancements in the field of photocatalytic CO2 conversion, with a specific focus on the synthesis of multi-carbon oxygenates. We systematically introduce the rational design of photocatalysts with high effectivity and selectivity, which follows a methodical inside-to-outside order. These strategies consider various aspects of photocatalyst optimization, from the core structure to the surface properties. Meanwhile, we delve into an in-depth analysis of the underlying catalytic mechanisms, particularly emphasizing the C-C coupling and multi-electron-coupled proton transfer processes. Lastly, we examine the prospects and challenges in developing photocatalysts for CO2 conversion, providing valuable insights for researchers and practitioners. This review aims to serve as a valuable resource for those seeking to design advanced catalysts for efficient photocatalytic CO2 reduction.

Key words: CO2 reduction, C2+ product, Photocatalysis, Active site, Reaction mechanism