催化学报 ›› 2024, Vol. 60: 304-315.DOI: 10.1016/S1872-2067(23)64641-8

• 论文 • 上一篇    下一篇

用于丁二烯选择性加氢Ni3ZnC0.7@Ni@C催化剂的设计

陈智冰a, 陈鑫泰a, 吕雅丽a, 牟效玲a,b,*(), 范佳辉a, 李经伟c, 严丽c, 林荣和a,b,*(), 丁云杰a,c,d,*()   

  1. a 浙江师范大学杭州高等研究院, 浙江杭州 311231
    b 浙江师范大学先进催化材料教育部重点实验室, 浙江金华 321004
    c 中国科学院大连化学物理研究所, 大连洁净能源国家实验室, 辽宁大连 116023
    d 中国科学院大连化学物理研究所, 催化基础国家重点实验室, 辽宁大连 116023
  • 收稿日期:2024-01-08 接受日期:2024-03-03 出版日期:2024-05-18 发布日期:2024-05-22
  • 通讯作者: 电子信箱: xiaoling.mou@zjnu.edu.cn (牟效玲), catalysis.lin@zjnu.edu.cn (林荣和), dyj@dicp.ac.cn (丁云杰).
  • 作者简介:第一联系人:1共同第一作者.
  • 基金资助:
    国家自然科学基金(22372150);浙江省自然科学基金(LQ24B030012);金华市重点科技计划项目(2022-1-078);浙江师范大学科研基金(ZZ323205020521005039);浙江师范大学科研基金(KYJ51020910);浙江师范大学科研基金(YS304320036)

Design of earth-abundant Ni3ZnC0.7@Ni@C catalyst for selective butadiene hydrogenation

Zhibing Chena, Xintai Chena, Yali Lva, Xiaoling Moua,b,*(), Jiahui Fana, Jingwei Lic, Li Yanc, Ronghe Lina,b,*(), Yunjie Dinga,c,d,*()   

  1. a Hangzhou Institute of Advanced studies, Zhejiang Normal University, Hangzhou 311231, Zhejiang, China
    b Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
    c Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    d The State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road, Dalian 116023, Liaoning, China
  • Received:2024-01-08 Accepted:2024-03-03 Online:2024-05-18 Published:2024-05-22
  • Contact: E-mail: xiaoling.mou@zjnu.edu.cn (X. Mou), catalysis.lin@zjnu.edu.cn (R. Lin), dyj@dicp.ac.cn (Y. Ding).
  • About author:First author contact:1 Contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(22372150);Zhejiang Provincial Natural Science Foundation of China(LQ24B030012);Jinhua Science and Technology Plan Project(2022-1-078);Zhejiang Normal University(ZZ323205020521005039);Zhejiang Normal University(KYJ51020910);Zhejiang Normal University(YS304320036)

摘要:

丁二烯选择性加氢是提升碳四综合利用效率的关键技术, 因此受到了工业界和学术界的广泛关注. 然而, 在实际操作过程中, 原料中的单烯烃也可能发生加氢, 这降低了整个工艺过程的经济性. 此外, 丁二烯分子内含有两个共轭的C=C双键, 其化学性质活泼, 容易在金属催化剂表面发生聚合生成碳沉积物, 从而导致催化剂失活. 因此, 如何提高烯烃的选择性和催化剂的稳定性成为一项挑战. 目前, 丁二烯加氢反应主要采用Pd, Pt, Au等贵金属催化剂, 但贵金属的高昂价格和稀缺性限制了其大规模应用. 因此, 开发基于廉价金属的替代催化剂具有重要意义.

镍基体系在丁二烯的选择性加氢中显示出一定潜力, 然而, 其实际应用受到积炭和过度加氢导致的严重失活等问题的影响. 本文在前期工作固相法合成Ni3ZnC0.7@C (采用无溶剂的固态反应法合成, 将金属硝酸盐与双氰胺机械混合, 再于氢气下高温还原制得, 其中Ni3ZnC0.7颗粒外围具有碳层覆盖, 详见Dalton Trans., 2023, 52, 11571-11580))基础上, 通过对Ni3ZnC0.7@C进行可控的空气氧化处理去除碳层, 设计制备了一种具有双核壳结构的Ni3ZnC0.7@Ni@C新型催化剂. 该催化剂的特点是金属镍小团簇均匀分散在中心Ni3ZnC0.7纳米粒子上, 而Ni3ZnC0.7@Ni被全部包裹在多孔碳壳中. 利用高角度环形暗场扫描透射电子显微镜、高分辨透射电镜、热重分析和Ar离子溅射X射线光电子能谱等技术进行了表征, 并提出了氧化过程中催化剂组成与结构的变化规律. 实验结果表明, Ni3ZnC0.7@Ni@C催化剂在丁二烯选择性加氢反应中表现出较好的活性和稳定性, 其性能超过了Ni3ZnC0.7@C和很多文献报道的镍催化体系, 如Ni3InC0.5和Ni3In合金等. 此外, 本文还发现Ni3ZnC0.7@Ni@C催化剂在初始反应阶段的积炭行为具有自限性. 相对于碳载体本身, 反应中原位沉积的少量碳质(“软”积炭)能够在更低温度下被氧化, 并且碳沉积在反应初期达到平衡, 该现象不仅能够抑制催化剂的进一步失活, 还可以显著提高总丁烯的选择性. 在温和反应条件下, Ni3ZnC0.7@Ni@C催化剂能够获得高于93%的总丁烯选择性和98%的转化率, 并且在长达80 h测试中依然保持催化性能稳定.

综上, 本文通过利用镍及其间隙化合物的独特性质, 开发了一种高活性、高选择性的非贵金属催化剂. 通过调节电子结构、表面反应性以及潜在的协同效应, 显著提高了催化性能. 此外, 研究发现反应中原位生成的“软”积炭不仅能够抑制催化剂的过度失活, 还有助提高催化剂的选择性和稳定性. 上述结果对于研究存在类似积炭问题的其他催化过程具有借鉴意义.

关键词: 丁二烯加氢, 间隙化合物, Ni3ZnC0.7@Ni@C, 稳定性, 结构演变

Abstract:

The pursuit of developing catalysts from earth-abundant materials to supplant those based on precious metals is of paramount importance in selective hydrogenations. While nickel-based systems have shown promise in the selective hydrogenation of butadiene, their practical applications are hampered by severe deactivation issues due to coke deposition and excessive hydrogenation. Here, a novel catalyst, Ni3ZnC0.7@Ni@C, is ingeniously engineered through the controlled oxidation of Ni3ZnC0.7@C. This catalyst is characterized by small Ni0 ensembles elegantly embellishing the Ni3ZnC0.7 nanoparticles, all encased within porous carbon shells. The evolutions of this catalyst, in terms of composition and structure during the oxidation process, is meticulously observed and characterized using a spectrum of advanced techniques. The Ni3ZnC0.7@Ni@C catalyst exhibits outstanding activity and stability in the hydrogenation of butadiene, surpassing other Ni-based systems, including its precursor Ni3ZnC0.7@C and other previously documented catalysts such as Ni3InC0.5 and the Ni3In alloy. A pivotal finding of this research is the self-limiting behavior of coke deposition in the initial reaction stages. This intriguing phenomenon not only curbs further deactivation but also significantly enhances butene production, maintaining operational stability for an impressive duration of 80 hours. This discovery underscores the advantageous role of in situ generated 'soft' cokes in augmenting the selectivity and stability of the catalyst, which is particularly enlightening for other catalytic processes that are similarly afflicted by coking issues, thereby opening avenues for further in-depth investigations in this field.

Key words: Butadiene hydrogenation, Interstitial compound, Ni3ZnC0.7@Ni@C, Stability, Structural evolution