催化学报 ›› 2024, Vol. 60: 337-350.DOI: 10.1016/S1872-2067(24)60022-7
Yongbiao Huaa, Kumar Vikranta, Ki-Hyun Kima,*(), Philippe M. Heynderickxb,c, Danil W. Boukhvalovd,e
收稿日期:
2024-02-02
接受日期:
2024-03-08
出版日期:
2024-05-18
发布日期:
2024-05-20
通讯作者:
电子信箱: Yongbiao Huaa, Kumar Vikranta, Ki-Hyun Kima,*(), Philippe M. Heynderickxb,c, Danil W. Boukhvalovd,e
Received:
2024-02-02
Accepted:
2024-03-08
Online:
2024-05-18
Published:
2024-05-20
Contact:
E-mail: 摘要:
甲醛(FA)作为一种有致癌风险的有害污染物, 在室内环境中普遍存在. 为了高效去除甲醛, 催化氧化技术成为了一种既经济又节能的选择, 它不仅能降低材料成本(例如避免使用贵金属), 也能在无光和室温的条件下进行.
本文制备了一种成本效益高的碱改性锰酸铜尖晶石(CuMn2O4)催化剂, 并用于甲醛催化氧化反应中. 实验结果表明, 采用碱(1 mol L‒1氢氧化钾)改性的CuMn2O4 (1-CuMn2O4)作为催化剂, 在室温条件下, 当甲醛浓度为50 ppm, 气体空速为4777 h‒1时, 甲醛转化率(XFA)达到100%; 此外, 在甲醛转化率为10%时, 其稳态反应速率达到了8.18 × 10‒2 mmol g‒1 h‒1. 原位漫反射红外傅立叶变换光谱结果表明, 在催化剂的作用下, 甲醛分子经过二氧亚甲基和甲酸酯中间体的转化, 最终被氧化为水和二氧化碳. 进一步结合密度泛函理论模拟发现, 1-CuMn2O4具有较高的催化氧化甲醛性能, 可归因于甲醛分子更牢固地吸附在1-CuMn2O4表面, 甲醛吸附所需的能量较低, 以及最终产物从催化剂表面脱附所需的能量也较低的综合效应.
本研究为在无光和室温条件下, 高效去除空气中甲醛提供了新型高效、成本效益高且无需贵金属的催化剂, 从而为室内空气净化提供了新的科学见解.
Yongbiao Hua, Kumar Vikrant, Ki-Hyun Kim, Philippe M. Heynderickx, Danil W. Boukhvalov. 碱改性铜锰尖晶石室温催化氧化空气中甲醛[J]. 催化学报, 2024, 60: 337-350.
Yongbiao Hua, Kumar Vikrant, Ki-Hyun Kim, Philippe M. Heynderickx, Danil W. Boukhvalov. Alkali-modified copper manganite spinel for room temperature catalytic oxidation of formaldehyde in air[J]. Chinese Journal of Catalysis, 2024, 60: 337-350.
Fig. 2. Physicochemical characterization of the analyzed materials. (a) PXRD patterns of CuMn2O4, 0.2-CuMn2O4, 1-CuMn2O4, and 10-CuMn2O4. (b) TGA data of CuMn2O4, 0.2-CuMn2O4, 1-CuMn2O4, and 10-CuMn2O4. (c) N2 adsorption-desorption isotherms of CuMn2O4, 0.2-CuMn2O4, 1-CuMn2O4, and 10-CuMn2O4. (d) Pore size distributions of CuMn2O4, 0.2-CuMn2O4, 1-CuMn2O4, and 10-CuMn2O4.
Order | Material | BET surface area (m2 g‒1) | Pore volume (cm3 g‒1) | Actual content a (wt%) | XPS | |||||
---|---|---|---|---|---|---|---|---|---|---|
K | Cu | Mn | Cu+/Cu2+ | Mn3+/Mn4+ | (Oβ+Oγ)/Oα | |||||
1 | CuMn2O4 | 11.54±0.04 | 0.008 | — | 31.73 | 47.88 | 0.40 | 1.58 | 0.59 | |
2 | 0.2-CuMn2O4 | 31.55±0.16 | 0.046 | 0.56 | 28.67 | 49.30 | 0.36 | 2.08 | 0.89 | |
3 | 1-CuMn2O4 | 38.96±0.17 | 0.067 | 0.65 | 28.52 | 50.15 | 0.42 | 2.18 | 1.08 | |
4 | 10-CuMn2O4 | 33.42±0.15 | 0.050 | 1.90 | 22.55 | 50.66 | 0.40 | 2.66 | 1.34 |
Table 1 Physical characteristics and surface elemental compositions of the analyzed materials.
Order | Material | BET surface area (m2 g‒1) | Pore volume (cm3 g‒1) | Actual content a (wt%) | XPS | |||||
---|---|---|---|---|---|---|---|---|---|---|
K | Cu | Mn | Cu+/Cu2+ | Mn3+/Mn4+ | (Oβ+Oγ)/Oα | |||||
1 | CuMn2O4 | 11.54±0.04 | 0.008 | — | 31.73 | 47.88 | 0.40 | 1.58 | 0.59 | |
2 | 0.2-CuMn2O4 | 31.55±0.16 | 0.046 | 0.56 | 28.67 | 49.30 | 0.36 | 2.08 | 0.89 | |
3 | 1-CuMn2O4 | 38.96±0.17 | 0.067 | 0.65 | 28.52 | 50.15 | 0.42 | 2.18 | 1.08 | |
4 | 10-CuMn2O4 | 33.42±0.15 | 0.050 | 1.90 | 22.55 | 50.66 | 0.40 | 2.66 | 1.34 |
Fig. 4. CO2 pulse chemisorption results for CO2 pulse chemisorption results for (●) CuMn2O4, (○) 0.2-CuMn2O4, (■) 1-CuMn2O4, and (□) 10-CuMn2O4. (a) Relative uptake (full uptake corresponds to zero. Saturation peak corresponds to unity, i.e., no uptake). (b) Difference in relative uptake per catalyst, Ai ? Ai?1 with i = 1?20.
Fig. 5. FA removal of the analyzed catalysts. (a) Light-off curves (FA: 50 ppm in air, mcat: 120 mg, flow rate: 50 mL min?1, and RH: 0%). (b) Effect of mcat (catalyst: 1-CuMn2O4, FA: 50 ppm in air, flow rate: 50 mL min?1, and RH: 0%). (c) Effect of flow rate (catalyst: 1-CuMn2O4, FA: 50 ppm in air, mcat: 60 mg, and RH: 0%). (d) Effect of FA concentration (catalyst: 1-CuMn2O4, mcat: 60 mg, flow rate: 50 mL min?1, and RH: 0%). (e) Effect of RH (catalyst: 1-CuMn2O4, FA: 50 ppm in air, mcat: 60 mg, and flow rate: 50 mL min?1). (f) TOS stability (catalyst: 1-CuMn2O4, FA: 50 ppm in air, flow rate: 50 mL min?1, mcat: 30 mg, and RH: 0%). Error bars represent standard deviation of two runs.
Order | Catalyst | Catalyst mass (mg) | Reactant mixture | Pollutant concentration (ppm) | Flow rate (mL min‒1) | Flow rate (mol s‒1) | Space velocity (h‒1) | Maximum XFA (%) at 30 °C | r (mmol gcat‒1 h‒1) at 30 °C |
---|---|---|---|---|---|---|---|---|---|
1 | CuMn2O4 | 120 | FA + Air (balance) | 50 | 50 | 1.70 × 10‒9 | 4777 | 27.5 | 1.41 × 10‒2 |
2 | 0.2-CuMn2O4 | 120 | FA + Air (balance) | 50 | 50 | 1.70 × 10‒9 | 4777 | 56.1 | 2.87 × 10‒2 |
3 | 1-CuMn2O4 | 120 | FA + Air (balance) | 50 | 50 | 1.70 × 10‒9 | 4777 | 100 | 5.11 × 10‒2 |
4 | 10-CuMn2O4 | 120 | FA + Air (balance) | 50 | 50 | 1.70 × 10‒9 | 4777 | 100 | 5.11 × 10‒2 |
Table 2 Performance comparison among 1-CuMn2O4 catalysts in terms of reaction kinetic rates at their maximum achievable removal efficiency against FA.
Order | Catalyst | Catalyst mass (mg) | Reactant mixture | Pollutant concentration (ppm) | Flow rate (mL min‒1) | Flow rate (mol s‒1) | Space velocity (h‒1) | Maximum XFA (%) at 30 °C | r (mmol gcat‒1 h‒1) at 30 °C |
---|---|---|---|---|---|---|---|---|---|
1 | CuMn2O4 | 120 | FA + Air (balance) | 50 | 50 | 1.70 × 10‒9 | 4777 | 27.5 | 1.41 × 10‒2 |
2 | 0.2-CuMn2O4 | 120 | FA + Air (balance) | 50 | 50 | 1.70 × 10‒9 | 4777 | 56.1 | 2.87 × 10‒2 |
3 | 1-CuMn2O4 | 120 | FA + Air (balance) | 50 | 50 | 1.70 × 10‒9 | 4777 | 100 | 5.11 × 10‒2 |
4 | 10-CuMn2O4 | 120 | FA + Air (balance) | 50 | 50 | 1.70 × 10‒9 | 4777 | 100 | 5.11 × 10‒2 |
Fig. 7. Optimized atomic structures and corresponding free energies of the steps of the simulated pathway for XFA over pristine CuMn2O4 and K-doped CuMn2O4 substrate: initial (a), intermediate (b?d), and final steps (e) for pristine CuMn2O4; initial (f), intermediate (g?i), and final steps (j) for K-doped CuMn2O4.
Catalyst | Catalyst activation | mcat (mg) | Reactant mixture | FA concentration (ppm) | Flow rate (mL min‒1) | FFA (mol s‒1) | Space velocity | r (mmol gcat‒1 h‒1)a | T (10% XFA) | Maximum XFA (%) | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10% XFA | maximum XFA | ||||||||||||
Graphene oxide/MnO2 | NA | 100 | FA + air c | 100 | 50 | 3.41 × 10‒9 | 30000 mL g‒1 h‒1 | NA | 2.45 × 10‒2 | NA | 20 | [ | |
Partially crystallized MnOx | NA | 2000 | FA + air c | 1 | 52000 | 3.54 × 10‒8 | 48000 h‒1 | NA | 1.34 × 10‒2 | NA | 21 | [ | |
K-MnO2 | NA | 75 | FA + O2(20 vol%) + N2 c +RH50% | 200 | 100 | 1.36 × 10‒8 | 80000 mL g‒1 h‒1 | 6.54 × 10‒2 | 1.96 × 10‒2 | 50 | 3 | [ | |
Pd-CeO2 octahedrons | 200 °C using H2 gas for 1 h | 100 | FA + N2 c +O2 (20%) | 600 | 45 | 1.84 × 10‒8 | 10000 h‒1 | 6.63 × 10‒2 | 2.65 × 10‒2 | 11 | 4 | [ | |
Pd-TS-1(EG) | NA | 100 | FA +O2 (20%) +N2 c | 110 | 100 | 7.50 × 10‒9 | 60000 mL g‒1 h‒1 | 2.70 × 10‒2 | 2.16 × 10‒2 | 35 | 8 | [ | |
Pd-TS-1(CO) | NA | 100 | FA +O2 (20%) + N2 c | 110 | 100 | 7.50 × 10‒9 | 36000 mL h‒1 g‒1 | 2.70 × 10‒2 | 8.10 × 10‒3 | 64 | 3 | [ | |
0.1Pd-Layered double hydroxides | NA | 200 | FA +air/N2 mixture | 50 | 80 | 2.73 × 10‒9 | 24,000 mL h‒1 g‒1 | NA | 1.87 × 10‒2 | NA | 38 | [ | |
0.5%-Pt-4%-CeO2/Activated carbon | 400 °C using 20 vol% H2 gas (mixed with N2 gas) for 5 h | 2800 | FA + air c | 61 | 800 | 3.32652 × 10‒8 | 8000 h‒1 | NA | 4.28× 10‒2 | NA | 100 | [ | |
0.5%-Pt-3%-La/TiO2 | NA | 100 | FA + O2 (21%) + RH50% + N2 c | 0.5 | 100 | 3.40832 × 10‒11 | 60000 mL. g‒1 h‒1 | NA | 1.20 × 10‒3 | NA | 98 | [ | |
0.2%-Pt/MnO2/TiO2 nanotube | at 300 °C using H2 gas for 3 h | 200 | FA+ RH35%+ air c | 50 | 100 | 3.41 × 10‒9 | 30000 mL h‒1 g‒1 | NA | 5.83 × 10‒2 | NA | 95 | [ | |
0.1%-Pt-Ni/ZSM-5 | during synthesis using FA solution | 200 | FA + O2(20 vol%) + N2 c | 50 | 80 | 2.73 × 10‒9 | 30000 mL h‒1 g‒1 | NA | 4.91 × 10‒2 | NA | 100 | [ | |
1%-Pt-K-MnO2 | during synthesis using NaBH4 | 60 | FA + O2 (20 vol%) + N2 c | 20 | 50 | 6.82 × 10‒10 | 50000 mL. g‒1 h‒1 | NA | 4.09 × 10‒2 | NA | 100 | [ | |
3%-Pt-MnOx-CeO2 | at 200 °C using H2 for 1 h | 200 | FA + O2 (20 vol%) + He c | 30 | 100 | 2.04 × 10‒9 | 30000 mL g‒1 h‒1 | NA | 3.68 × 10‒2 | NA | 100 | [ | |
0.8%Pt-FeOOH long rod | NA | 200 | FA + air c | 50 | 80 | 2.73 × 10‒9 | 24000 mL g‒1 h‒1 | NA | 4.91 × 10‒2 | NA | 100 | [ | |
Pt/siliceous beta zeolite | NA | 100 | FA + O2 (20 vol%) + He c + 50% RH | 80 | 100 | 5.45 × 10‒9 | 60000 mL g‒1 h‒1 | NA | 1.96 × 10‒1 | NA | 100 | [ | |
Ag/manganese oxides with octahedral molecular sieve | NA | 100 | FA + O2 (20 vol%) + He c + 50% RH | 80 | 100 | 5.45 × 10‒9 | 60000 mL g‒1 h‒1 | NA | 1.96 × 10‒1 | NA | 100 | [ | |
1-CuMn2O4 | NA | 60 | FA + air c | 50 | 50 | 1.70 × 10‒9 | 4777 h‒1 | 8.18 × 10‒2b | 1.02 × 10‒1 | 38 | 100 | This work |
Table 3 Performance comparison between 1-CuMn2O4 and other catalysts reported for the RT FA oxidation reaction.
Catalyst | Catalyst activation | mcat (mg) | Reactant mixture | FA concentration (ppm) | Flow rate (mL min‒1) | FFA (mol s‒1) | Space velocity | r (mmol gcat‒1 h‒1)a | T (10% XFA) | Maximum XFA (%) | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10% XFA | maximum XFA | ||||||||||||
Graphene oxide/MnO2 | NA | 100 | FA + air c | 100 | 50 | 3.41 × 10‒9 | 30000 mL g‒1 h‒1 | NA | 2.45 × 10‒2 | NA | 20 | [ | |
Partially crystallized MnOx | NA | 2000 | FA + air c | 1 | 52000 | 3.54 × 10‒8 | 48000 h‒1 | NA | 1.34 × 10‒2 | NA | 21 | [ | |
K-MnO2 | NA | 75 | FA + O2(20 vol%) + N2 c +RH50% | 200 | 100 | 1.36 × 10‒8 | 80000 mL g‒1 h‒1 | 6.54 × 10‒2 | 1.96 × 10‒2 | 50 | 3 | [ | |
Pd-CeO2 octahedrons | 200 °C using H2 gas for 1 h | 100 | FA + N2 c +O2 (20%) | 600 | 45 | 1.84 × 10‒8 | 10000 h‒1 | 6.63 × 10‒2 | 2.65 × 10‒2 | 11 | 4 | [ | |
Pd-TS-1(EG) | NA | 100 | FA +O2 (20%) +N2 c | 110 | 100 | 7.50 × 10‒9 | 60000 mL g‒1 h‒1 | 2.70 × 10‒2 | 2.16 × 10‒2 | 35 | 8 | [ | |
Pd-TS-1(CO) | NA | 100 | FA +O2 (20%) + N2 c | 110 | 100 | 7.50 × 10‒9 | 36000 mL h‒1 g‒1 | 2.70 × 10‒2 | 8.10 × 10‒3 | 64 | 3 | [ | |
0.1Pd-Layered double hydroxides | NA | 200 | FA +air/N2 mixture | 50 | 80 | 2.73 × 10‒9 | 24,000 mL h‒1 g‒1 | NA | 1.87 × 10‒2 | NA | 38 | [ | |
0.5%-Pt-4%-CeO2/Activated carbon | 400 °C using 20 vol% H2 gas (mixed with N2 gas) for 5 h | 2800 | FA + air c | 61 | 800 | 3.32652 × 10‒8 | 8000 h‒1 | NA | 4.28× 10‒2 | NA | 100 | [ | |
0.5%-Pt-3%-La/TiO2 | NA | 100 | FA + O2 (21%) + RH50% + N2 c | 0.5 | 100 | 3.40832 × 10‒11 | 60000 mL. g‒1 h‒1 | NA | 1.20 × 10‒3 | NA | 98 | [ | |
0.2%-Pt/MnO2/TiO2 nanotube | at 300 °C using H2 gas for 3 h | 200 | FA+ RH35%+ air c | 50 | 100 | 3.41 × 10‒9 | 30000 mL h‒1 g‒1 | NA | 5.83 × 10‒2 | NA | 95 | [ | |
0.1%-Pt-Ni/ZSM-5 | during synthesis using FA solution | 200 | FA + O2(20 vol%) + N2 c | 50 | 80 | 2.73 × 10‒9 | 30000 mL h‒1 g‒1 | NA | 4.91 × 10‒2 | NA | 100 | [ | |
1%-Pt-K-MnO2 | during synthesis using NaBH4 | 60 | FA + O2 (20 vol%) + N2 c | 20 | 50 | 6.82 × 10‒10 | 50000 mL. g‒1 h‒1 | NA | 4.09 × 10‒2 | NA | 100 | [ | |
3%-Pt-MnOx-CeO2 | at 200 °C using H2 for 1 h | 200 | FA + O2 (20 vol%) + He c | 30 | 100 | 2.04 × 10‒9 | 30000 mL g‒1 h‒1 | NA | 3.68 × 10‒2 | NA | 100 | [ | |
0.8%Pt-FeOOH long rod | NA | 200 | FA + air c | 50 | 80 | 2.73 × 10‒9 | 24000 mL g‒1 h‒1 | NA | 4.91 × 10‒2 | NA | 100 | [ | |
Pt/siliceous beta zeolite | NA | 100 | FA + O2 (20 vol%) + He c + 50% RH | 80 | 100 | 5.45 × 10‒9 | 60000 mL g‒1 h‒1 | NA | 1.96 × 10‒1 | NA | 100 | [ | |
Ag/manganese oxides with octahedral molecular sieve | NA | 100 | FA + O2 (20 vol%) + He c + 50% RH | 80 | 100 | 5.45 × 10‒9 | 60000 mL g‒1 h‒1 | NA | 1.96 × 10‒1 | NA | 100 | [ | |
1-CuMn2O4 | NA | 60 | FA + air c | 50 | 50 | 1.70 × 10‒9 | 4777 h‒1 | 8.18 × 10‒2b | 1.02 × 10‒1 | 38 | 100 | This work |
|
[1] | 李洋, 王雄, 胡星盛, 胡彪, 田昇, 王丙昊, 陈浪, 陈广辉, 彭超, 申升, 尹双凤. 可循环Pd/TiO2构筑及其紫外光催化苯甲醛与碘苯偶联合成二苯甲酮[J]. 催化学报, 2024, 59(4): 159-168. |
[2] | Dae-Hwan Lim, Aadil Bathla, Hassan Anwer, Sherif A. Younis, Danil W. Boukhvalov, Ki-Hyun Kim. 氮掺杂对环境空气中TiO2纳米催化剂抗甲醛光催化矿化的影响[J]. 催化学报, 2024, 59(4): 303-323. |
[3] | 刘玉庭, 聂贝黎, 李宁, 刘慧芳, 王峰. 氯自由基介导的光催化芳基醚C(sp3)-H氧化生成酯[J]. 催化学报, 2024, 58(3): 123-128. |
[4] | 齐宴宾, 朱以华, 江宏亮, 李春忠. 通过NiMo氧化物-CoMo氧化物混合物衍生催化剂中的界面相互作用促进甲醇到甲酸盐的电催化氧化[J]. 催化学报, 2024, 56(1): 139-149. |
[5] | 米金星, 陈孝平, 丁亚军, 张良柱, 马军, 康辉, 吴籼虹, 刘岳峰, 陈建军, 吴忠帅. 活化高熵氧化物中部分金属位点显著增强热催化和电催化[J]. 催化学报, 2023, 48(5): 235-246. |
[6] | 林杉帆, 郅玉春, 张文娜, 袁小帅, 张成伟, 叶茂, 徐舒涛, 魏迎旭, 刘中民. 氢转移反应对分子筛催化甲醇和二甲醚动态自催化反应历程的贡献: 深入理解甲醛的生成机理和作用机制[J]. 催化学报, 2023, 46(3): 11-27. |
[7] | 王洪芳, 徐雷涛, 吴景程, 周鹏, 陶沙沙, 逯宇轩, 吴贤文, 王双印, 邹雨芹. 通过TEMPO增强脱氢和OH吸附促进中性电解质中5-羟甲基糠醛的电催化氧化[J]. 催化学报, 2023, 46(3): 148-156. |
[8] | 吴沛文, 邓畅, 刘锋, 朱昊男, 陈琳琳, 刘若禹, 朱文帅, 徐春明. 磁性可循环高熵金属氧化物催化剂用于活化氧气催化氧化脱硫[J]. 催化学报, 2023, 54(11): 238-249. |
[9] | 顾宇, 王磊, 徐柏庆, 施慧. 金属-水界面催化的分子机制: 加氢与氧化反应[J]. 催化学报, 2023, 54(11): 1-55. |
[10] | 王宇, Jaime Gallego, 汪炜, Phillip Timmer, 丁敏, Alexander Spriewald Luciano, Tim Weber, Lorena Glatthaar, 郭杨龙, Bernd M. Smarsly, Herbert Over. 析出型LaFe0.9Ru0.1O3钙钛矿催化剂在丙烷催化氧化反应中的自活化现象[J]. 催化学报, 2023, 54(11): 250-264. |
[11] | 逯宇轩, 杨柳, 姜一民, 原甑然, 王双印, 邹雨芹. 局域静电环境工程用于增强电催化生物质转化过程中羟基活性[J]. 催化学报, 2023, 53(10): 153-160. |
[12] | 李婧宇, 祁明雨, 徐艺军. 超薄Ni掺杂ZnIn2S4纳米片用于光催化醇裂解同时制备C-C耦合产物及氢气[J]. 催化学报, 2022, 43(4): 1084-1091. |
[13] | Muhammad Tayyab, 刘玉洁, 敏世雄, Rana Muhammad Irfan, 朱乔虹, 周亮, 雷菊英, 张金龙. 无贵金属光催化剂VC/CdS纳米线将苯甲醇选择性氧化为苯甲醛并产氢[J]. 催化学报, 2022, 43(4): 1165-1175. |
[14] | 李振宇, 淮丽媛, 郝盼盼, 赵玺, 王永钊, 张炳森, 谌春林, 张建. 碳纳米管负载钯基催化剂催化氧化2,5-呋喃二甲醇合成2,5-呋喃二甲酸[J]. 催化学报, 2022, 43(3): 793-801. |
[15] | 刘珍, 田坚, 余长林, 樊启哲, 刘兴强. 溶剂热合成可调控氧空位的Bi2MoO6纳米晶及其光催化氧化制喹啉和抗生素降解[J]. 催化学报, 2022, 43(2): 472-484. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||