催化学报 ›› 2024, Vol. 60: 42-67.DOI: 10.1016/S1872-2067(24)60032-X

• 综述 • 上一篇    下一篇

碳载金属单原子催化剂的电合成氨进展

李沐霖a, 谢一萌a, 宋静婷a, 杨级a,*(), 董金超a, 李剑锋a,b,*()   

  1. a厦门大学能源学院, 化学化工学院, 物理科学与技术学院, 固体表面物理化学国家重点实验室,能源材料化学协同创新中心, 福建厦门 361005
    b福建能源材料科学与技术创新实验室(嘉庚创新实验室), 福建厦门 361005
  • 收稿日期:2024-03-13 接受日期:2024-04-02 出版日期:2024-05-18 发布日期:2024-05-20
  • 通讯作者: 电子信箱: chem.yang@xmu.edu.cn (杨级), li@xmu.edu.cn (李剑锋).
  • 基金资助:
    国家重点研发计划(2023YFA1508004);国家自然科学基金(21925404);国家自然科学基金(22021001);国家自然科学基金(21991151);国家自然科学基金(22222903);国家自然科学基金(T2293692);中国博士后科学基金(2023M742909);北京分子科学国家实验室(BNLMS202305);国家基础科学人才培养科学基金(NFFTBS,J1310024)

Ammonia electrosynthesis on carbon-supported metal single-atom catalysts

Mu-Lin Lia, Yi-Meng Xiea, Jingting Songa, Ji Yanga,*(), Jin-Chao Donga, Jian-Feng Lia,b,*()   

  1. aCollege of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Physical Science and Technology, Xiamen University, Xiamen 361005, Fujian, China
    bInnovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, Fujian, China
  • Received:2024-03-13 Accepted:2024-04-02 Online:2024-05-18 Published:2024-05-20
  • Contact: E-mail: chem.yang@xmu.edu.cn (J. Yang), li@xmu.edu.cn (J.-F. Li).
  • About author:Ji Yang graduated with a Ph.D. from Xiamen University in 2022. He carried out postdoctoral research in Jian-Feng Li’s group at Xiamen University from 2022 to 2024. His study focuses on the structural evolution of single-atom catalysts under electrocatalytic process by employing in-situ/operando Raman/XAFS characterizations. He has published more than 26 peer-reviewed papers.
    Jian-Feng Li is a full Professor of Chemistry at Xiamen University. He received his Bachelor’s degree in Chemistry from Zhejiang University in 2003 and his Ph.D. degree in Chemistry from Xiamen University in 2010. He worked as a post-doctor at the University of Bern and ETH Zurich in Switzerland from 2011 to 2014. Professor Li’s research interests include plasmonic core shell nanostructures, surface-enhanced Raman spectroscopy, electrochemistry, and surface catalysis. He has published more than 240 peer-reviewed papers with a total citation of over 15000, including Nature, Nature Energy, Nature Mater., Nature Nanotechnol., Nature Catal., Chem. Rev., etc. He is a Senior Editor of J. Phys. Chem. A/B/C.
  • Supported by:
    National Key Research and Development Program of China(2023YFA1508004);National Natural and Science Foundation of China(21925404);National Natural and Science Foundation of China(22021001);National Natural and Science Foundation of China(21991151);National Natural and Science Foundation of China(22222903);National Natural and Science Foundation of China(T2293692);China Postdoctoral Science Foundation(2023M742909);Beijing National Laboratory for Molecular Sciences(BNLMS202305);National Science Fund for Fostering Talents in Basic Science(NFFTBS,J1310024)

摘要:

氨不仅是生产农业肥料和医药分子的关键原料, 同时因其具备高能量密度和零碳排放的特性, 也被视为极具潜力的能源载体. 鉴于当前对环保和可持续发展的迫切需求, 实现氨分子的绿色合成已成为重要任务. 其中, 利用可再生能源驱动的电化学合成氨技术, 因其对环境友好和高效性, 被视为替代传统哈伯-博世工艺的绿色路径, 具有广阔的应用前景. 在电化学催化合成氨的研究中, 单原子催化剂(SAC)因其独特的性质而备受关注. SAC的孤立金属中心不仅提高了金属原子的利用率, 而且有效抑制了氮-氮偶联反应, 从而显著提升了催化合成氨的效率, 成为当前的研究热点.

本文综述了SAC电催化合成氨领域的最新研究进展, 旨在为科研工作者提供基础的理论和实验参考. 系统总结了不同氮源(包括氮气、硝酸根、亚硝酸根及一氧化氮)合成氨的研究进展, 并深入探讨了催化剂的理论和实验设计、催化活性中心的种类及其催化活性, 以及真实反应过程中的催化动态行为. 首先, 介绍了自然和人工固氮系统中的氮循环路径. 自然固氮系统展示了氮气、氮氧化物、氨的循环路径, 为不同氮物种合成氨方法提供了可借鉴的思路; 而人工氮循环则阐述了社会发展、工业生产对自然循环氮平衡的破坏, 凸显了电化学人工固氮的必要性. 随后, 基于理论模拟方法, 在原子和分子尺度上总结了不同氮物种在催化剂表面的反应过程. 例如, 在氮气合成氨过程中探讨了涉及的解离路径、交替缔合及远端缔合路径等. 本文详细阐述了催化活性结构的理论筛选方法的重要性, 并介绍了如何通过结构稳定性评估、反应物种的吸附活性以及催化活性及选择性的综合考量, 来确定最佳的催化活性中心种类及微观结构. 随后, 总结了科研人员基于理论筛选结果, 采用热解策略制备碳载金属SAC的研究进展. 这些策略包括, 碳基底与金属络合物的混合热解策略、金属有机框架衍生策略、金属辅助小分子热解策略、吸附活性策略及模板牺牲辅助策略等. 同时, 系统地总结了不同SAC对四种氮前驱体还原反应的催化活性. 此外, 深入地讨论了催化活性中心如Cu和Fe单原子在合成氨反应过程中的结构动态演化行为, 强调了非原位结构可能仅是单原子前驱体, 而反应过程中演变结构才是真实催化活性中心. 这对于深入理解SAC电催化合成氨的机理和提高催化效率有一定的借鉴意义.

最后, 本文简要探讨了单原子催化剂在合成氨领域所面临的挑战及发展机遇. 主要包括(1)发展更为精准的理论预测方法, 实现从静态计算向动态模拟的转变, 以更准确地预测和解析催化剂在实际反应中的行为机制; (2)积极发展多原子协同位点, 从金属单原子到双甚至三原子团簇, 利用多原子间的协同作用提升催化效率; (3)发展可替代氨合成路径, 如低温等离子体耦合电化学合成氨技术, 以推动氨合成技术的绿色化和高效化; (4)结合动态谱学技术的发展及应用, 通过在原位甚至工况条件下的探究, 深入解析动态反应过程, 为催化剂的进一步优化提供科学依据. 通过发展更为精准的理论预测方法、多原子协同位点、可替代氨合成路径以及结合动态谱学技术的进步, 我们有望推动单原子催化剂在合成氨领域的应用取得更大突破.

关键词: 合成氨, 氮转化反应, 电化学还原, 单原子催化剂, 氮气, 氮氧化物

Abstract:

Ammonia, a feedstock platform for fertilizer and pharmaceutical production, is regarded as a zero-carbon energy carrier. The electrochemical synthesis of ammonia, powered by clean and renewable electricity, has garnered increased attention as an alternative to the Haber-Bosch process. Very recently, single-atom catalysts (SACs) have become highly effective electrocatalysts for such electrochemical transformation, where the isolated metal sites ensure the high atomic utilization efficiency as well as the prevention of nitrogen-nitrogen coupling. In this review, we focus on the recent progress of single-atom catalysts in electrochemical ammonia synthesis and briefly introduce nitrogen cycles in both natural and artificial ecosystems, followed by a discussion of catalyst design by theoretical and experimental methods. Synthesis routes from different nitrogen sources, including dinitrogen (N2) and nitrogen oxides (NOx), are also highlighted. Besides, the catalysis dynamics as an indispensable section is presented and discussed in-depth. Finally, we tackle challenges and offer perspectives, aspiring to provide insightful guidance for researchers in this community striving for advanced ammonia electrosynthesis.

Key words: Ammonia synthesis, Nitrogen-transforming reaction, Electrochemical reduction, Single-atom catalyst, Dinitrogen, Nitrogen oxides