催化学报 ›› 2024, Vol. 60: 68-106.DOI: 10.1016/S1872-2067(24)60013-6

• 综述 • 上一篇    下一篇

设计稳定的钌基析氢和析氧反应催化剂的基本原理

苟王燕a,b, 王译晨a,b, 张铭凯c, 谈晓荷a, 马媛媛a,b,*(), 瞿永泉b,*()   

  1. a西北工业大学深圳研究院, 广东深圳 518057
    b西北工业大学化学与化工学院, 陕西西安 710072
    c西安理工大学理学院, 陕西西安 710048
  • 收稿日期:2023-12-08 接受日期:2024-03-15 出版日期:2024-05-18 发布日期:2024-05-20
  • 通讯作者: 电子信箱: yyma@nwpu.edu.cn (马媛媛), yongquan@nwpu.edu.cn (瞿永泉).
  • 基金资助:
    广东省基础与应用基础研究基金(2023A1515012288);陕西省自然科学基金(2022JQ-433);中国博士后科学基金(2022M722585);中央高校基本科研业务费(D5000210829);中央高校基本科研业务费(D5000210601)

A review on fundamentals for designing stable ruthenium-based catalysts for the hydrogen and oxygen evolution reactions

Wangyan Goua,b, Yichen Wanga,b, Mingkai Zhangc, Xiaohe Tana, Yuanyuan Maa,b,*(), Yongquan Qub,*()   

  1. aResearch & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, Guangdong, China
    bSchool of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China
    cSchool of Science, Xi’an University of Technology, Xi’an 710048, Shaanxi, China
  • Received:2023-12-08 Accepted:2024-03-15 Online:2024-05-18 Published:2024-05-20
  • Contact: E-mail: yyma@nwpu.edu.cn (Y. Ma), yongquan@nwpu.edu.cn (Y. Qu).
  • About author:Yuanyuan Ma (School of Chemistry and Chemical Engineering, Northwestern Polytechnical University) is a professor at the School of Chemistry and Chemical Engineering, Northwestern Polytechnical University. She received her B.S. in Materials Science and Engineering from Nanjing University in 2001 and Ph.D from the University of California, Davis in 2012. Her current research focuses on the design of highly performed electrocatalysts for water splitting and organic transformations as well as the reaction mechanisms for electrochemical reactions.
    Yongquan Qu (School of Chemistry and Chemical Engineering, Northwestern Polytechnical University) is a professor at the School of Chemistry and Chemical Engineering, Northwestern Polytechnical University. He received his B.S. in Materials Science and Engineering from Nanjing University in 2001, M.S. in Chemistry from the Dalian Institute of Chemical Physics in 2004, and Ph.D in Chemistry from the University of California, Davis, in 2009. He worked as a postdoctoral research fellow in the University of California, Los Angeles, from 2009 to 2011. His research interests focus on heterogeneous catalysis in the areas of organic synthesis, clean energy production and biomimetic catalysis.
  • Supported by:
    Basic and Applied Basic Research Foundation of Guangdong Province(2023A1515012288);Natural Science Foundation of Shaanxi province, China(2022JQ-433);China Postdoctoral Science Foundation(2022M722585);Fundamental Research Funds for the Central Universities(D5000210829);Fundamental Research Funds for the Central Universities(D5000210601)

摘要:

清洁和可再生能源具有地域性和间歇性, 需要能量转换和存储技术来解决这些问题. 氢气(H2)具有无毒、易得、经济、储量丰富和零碳排放的优势, 作为能源媒介展现出巨大的潜力. 而电分解水技术, 因其高效性和便利性, 成为了一种极具吸引力、应用前景广阔且可靠的能源技术. 研究表明, 在较宽的pH范围内, 贵金属催化剂仍然是最优的析氢反应(HER)和析氧反应(OER)催化剂. 其中, 钌(Ru)作为一种相对便宜的铂族金属, 显示出在HER中替代商业铂碳(Pt/C)催化剂以及在OER中替代铱(Ir)的潜力. 然而, 尽管在提高钌基催化剂的催化活性方面取得了很大进展, 但其稳定性问题仍然是阻碍其实际应用的主要障碍. 因此, 迫切需要全面梳理和综述关于设计稳定钌基HER和OER催化剂的基本原理和最新进展, 更好地理解钌基催化剂的催化机理, 深入认识影响其稳定性的关键因素, 以期为解决这一挑战提供有力的理论支持和实践指导.

本文系统总结了钌基催化剂在电分解水反应中关于稳定性研究的最新进展. 首先, 简要介绍了钌基催化剂在HER/OER中的反应机理以及与之相关的理论计算、原位表征技术、稳定性测试手段和评价标准等方面的研究进展. 接下来, 详细探讨了钌基催化剂在HER/OER过程中的失活机制, 包括载体腐蚀、奥斯特瓦尔德成熟、团聚、颗粒脱离、活性位点中毒、金属溶解、过度氧化和晶体结构坍塌等. 基于以上对失活机制的认识, 进一步归纳了提高钌基催化剂稳定性的设计策略和机制. 在HER方面, 从引入导电基底、构筑核壳结构、形成镶嵌结构、增强金属-载体相互作用、相转变工程以及调节中间体吸附和脱附行为等方面阐述了提高钌基催化剂稳定性的策略. 对于OER过程, 也总结了一系列提高钌基催化剂OER稳定性的策略, 包括与铱杂化、构筑核壳结构、引入稳定的载体、化学掺杂、形成固溶体以及转变反应路径. 在分析了各种策略的优缺点并提出改进方向后, 还概述了钌基催化剂在全电解水以及器件中的研究现状. 最后, 指出了钌基催化剂稳定性研究所面临的挑战和未来的研究方向: (1) 需要更贴近工业实际的稳定性测试策略和评价标准; (2) 对失活机制的进一步研究; (3) 原位技术的进一步发展和应用; (4) 探索更多先进的改性策略, 如非晶态载体、范德华异质结、自旋态调节以及微环境调节等; (5) 关注实际应用中可能遇到的问题, 如催化剂大规模制备、双功能催化剂的设计以及杂质的影响.

综上, 本文系统地总结了钌基催化剂的反应机制、稳定性测试方法与评价标准、失活机制、设计策略、研究进展、具体应用以及目前存在的挑战, 希望能够进一步促进该领域深入水平研究. 同时, 本文对光催化、热催化、酶催化等催化领域的研究也提供一定的参考和借鉴. 

关键词: 电催化, 水分解, 失活机理, 钌基催化剂, 稳定性

Abstract:

Clean and renewable energy is generally localized and intermittent. Thus, energy conversion and storage technologies are necessary to compensate for these shortcomings. Electrolytic water splitting presents a reliable and promising energy technology for producing high purity hydrogen (H2). Among the platinum metals, ruthenium (Ru) has gained significant attentions as it generally outperforms commercial catalysts in terms of activity at a more affordable price. Although great progress has been made in improving the catalytic activity of Ru-based catalysts, stability remains a major challenge hindering their practical applications. To this end, this review introduces the fundamentals of the stability over Ru-based catalysts for water splitting, including the reaction mechanisms of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), measurement methods and evaluation criteria, as well as deactivation mechanisms. Moreover, the up-to-date advances of representative strategies for improving HER and OER stability of Ru-based catalysts are further discussed with respect to specific design principles and underlying mechanisms. Ultimately, insights into the challenges and opportunities for Ru-based electrocatalysts are provided to promote the development of next-generation Ru-based catalysts with exceptional stability. This review aims at guiding the design and synthesis of superior catalysts, generating increased interest among researchers, and stimulating further advanced research.

Key words: Electrocatalysis, Water splitting, Deactivation mechanism, Ruthenium-based catalyst, Stability