催化学报 ›› 2024, Vol. 63: 61-80.DOI: 10.1016/S1872-2067(24)60073-2
黄子超, 杨婷惠, 张颖冰, 管超群, 桂文科, 况敏*(), 杨建平*()
收稿日期:
2024-04-12
接受日期:
2024-06-11
出版日期:
2024-08-18
发布日期:
2024-08-19
通讯作者:
*电子信箱: jianpingyang@dhu.edu.cn (杨建平),mkuang@dhu.edu.cn (况敏).
基金资助:
Zichao Huang, Tinghui Yang, Yingbing Zhang, Chaoqun Guan, Wenke Gui, Min Kuang*(), Jianping Yang*()
Received:
2024-04-12
Accepted:
2024-06-11
Online:
2024-08-18
Published:
2024-08-19
Contact:
*E-mail: jianpingyang@dhu.edu.cn (J. Yang), mkuang@dhu.edu.cn (M. Kuang).
About author:
Min Kuang is currently a professor in the College of Materials Science and Engineering in Donghua University (China). She finished her PhD from Laboratory of Advanced Materials at Fudan University. After that, she joined the School of Materials Science and Engineering at Nanyang Technological University as a postdoctoral research associate. Her research interest is concentrating on developing advanced electrochemical C1-to-fuel conversion systems and the exploration of efficient electrocatalysts.Supported by:
摘要:
随着全球人口持续增长和工业化加速, 化石能源的过度消耗导致了CO2过量排放, 引起全球气候变暖和一系列随之而来的生态环境问题. 可再生能源驱动的电催化CO2还原能够在温和的条件下将CO2转化为一系列的增值化学品, 是实现碳中和的有前景的技术之一. 为了提高产物的选择性, 电催化CO2还原通常在中性和碱性介质中进行. 然而, 在反应过程中CO2不可避免地会在阴极转化为碳酸盐, 降低了CO2还原的效率. 酸性介质作为一种解决方案, 可以解决碳酸盐问题, 但引入了析氢反应的问题, 降低了酸性环境下CO2的转化效率. 目前, 在平衡碳效率和CO2还原性能之间存在挑战, 因此, 本文在总结近年来酸性电催化CO2还原工作的基础上, 对催化剂的设计方法进行了综述.
本文从阳离子效应和催化剂设计两方面综述了近年来酸性介质中CO2电解研究的主要进展, 强调了提高酸性介质中CO2电解选择性的必要性. 首先简要回顾了酸性介质中CO2电解的发展历程, 讨论了该领域面临的挑战, 即快速的析氢反应以及严苛的反应环境. 随后, 进一步阐明了碱金属阳离子(Li, Na, K和Cs)在酸性介质中的作用. 碱金属阳离子能够最大限度地富集CO2, 通过稳定关键中间体和调节溶液中H+的扩散来改善CO2还原的动力学. 在此基础上, 列举了通过催化剂设计直接或间接利用阳离子效应的例子, 包括催化剂形态设计、润湿性调节、功能材料改性以及串联结构的构建等. 此外, 还进一步介绍了无金属阳离子酸性介质中的电催化CO2还原结果. 最后展望了未来的发展方向, 构建更加高效、稳定的催化系统, 深入发展原位表征技术以及模拟计算方法以加深对反应机理的理解, 以及全方面拓展CO2还原技术将加速CO2还原的工业化进程.
综上, 本文对提高酸性CO2电解的选择性进行了综述, 相信能够为新型催化剂的研发提供思路. 总体而言, 电催化CO2还原从基础研究到工业应用的旅程充满了挑战. 尽管如此, 相信正在进行的研究将很快将大规模电催化CO2转化定位为全球碳循环可持续管理的关键战略.
黄子超, 杨婷惠, 张颖冰, 管超群, 桂文科, 况敏, 杨建平. 提高酸性CO2电解的选择性:阳离子效应和催化剂创新[J]. 催化学报, 2024, 63: 61-80.
Zichao Huang, Tinghui Yang, Yingbing Zhang, Chaoqun Guan, Wenke Gui, Min Kuang, Jianping Yang. Enhancing selectivity in acidic CO2 electrolysis: Cation effects and catalyst innovation[J]. Chinese Journal of Catalysis, 2024, 63: 61-80.
Media | Cathode electrolyte | Separator | Anode electrolyte | Anode material | Characterizations |
---|---|---|---|---|---|
Alkaline | KOH | AEM | KOH | nickel foam | advantages: high FE of eCO2R, low cathode overpotential; disadvantages: low carbon efficiency, high cost for KOH regeneration |
Neutral | KCl | AEM | KOH | nickel foam | advantages: high FE of eCO2R, sustainable electrolyte; disadvantages: low carbon efficiency, high resistance |
KHCO3 | CEM/AEM | KHCO3/KOH | Pt/nickel foam | ||
Acidic | inorganic acids and metal salts | CEM | H2SO4/K2SO4 | Ir, Ru, Pt | advantages: fewer carbon loss, fewer salt precipitation, disadvantages: severe HER, sluggish eCO2R kinetics |
BPM | KOH | nickel foam |
Table 1 Comparative analysis of eCO2R techniques across various media.
Media | Cathode electrolyte | Separator | Anode electrolyte | Anode material | Characterizations |
---|---|---|---|---|---|
Alkaline | KOH | AEM | KOH | nickel foam | advantages: high FE of eCO2R, low cathode overpotential; disadvantages: low carbon efficiency, high cost for KOH regeneration |
Neutral | KCl | AEM | KOH | nickel foam | advantages: high FE of eCO2R, sustainable electrolyte; disadvantages: low carbon efficiency, high resistance |
KHCO3 | CEM/AEM | KHCO3/KOH | Pt/nickel foam | ||
Acidic | inorganic acids and metal salts | CEM | H2SO4/K2SO4 | Ir, Ru, Pt | advantages: fewer carbon loss, fewer salt precipitation, disadvantages: severe HER, sluggish eCO2R kinetics |
BPM | KOH | nickel foam |
Fig. 1. (a) A plot of log concentration of inorganic carbon species, H+ and OH- as a function of pH for an open CO2-H2O system. Reprinted with permission from Ref. [36]. Copyright 2023, Elsevier. (b) FE toward all products on sputtered Cu catalyst in 1 mol L-1 H3PO4 with different KCl concentrations at -0.4 A cm-2. Reprinted with permission from Ref. [20]. Copyright 2021, American A
Catalyst | Electrolyte | Major product | FE (%) | Stability (h) | SPCE (%) | Ref. |
---|---|---|---|---|---|---|
Ni5@NCN | 0.25 mol L‒1 Na2SO4 + H2SO4 | CO | 84.3 | 20 | none | [ |
Ag@C | H2SO4 + 0.5 mol L‒1 K2SO4 | CO | 95 | 9 | 46.2 | [ |
NiNF-1100 | H2SO4 + 0.05 mol L‒1 K2SO4 | CO | 90 | 30 | 78 | [ |
PTFE-Q/Ag | 0.1 mol L‒1 K2SO4 + 0.1 mol L‒1 H2SO4 | CO | 95.6 | 6.6 | none | [ |
PDDA-Ag | 0.1 mol L‒1 H2SO4 | CO | 95 | 36 | none | [ |
PDDA-GO-Ag | 0.01 mol L‒1 H2SO4 | CO | 85 | 50 | none | [ |
BiNS | 0.05 mol L‒1 H2SO4 +3 mol L‒1 KCl | HCOOH | 92.2 | 8 | none | [ |
Bi RS | 0.1 mol L‒1 H2SO4 + 0.5 mol L‒1 K2SO4 | HCOOH | 96.3 | 50 | 79 | [ |
SiC-NafionTM /SnBi/PTFE | 0.05 mol L‒1 H2SO4 + 3 mol L‒1 KCl | HCOOH | 92 | 125 | 65 | [ |
Cu6Sn5 | 0.05 mol L‒1 H2SO4+3 mol L‒1 KCl | HCOOH | 91 | 3300 | 77.4 | [ |
18-C-6/Cu | H2SO4 + 0.5 mol L‒1 K2SO4 | CH4 | 51.2 | 4.4 | 43 | [ |
Cu/PFSA | 1 mol L‒1 H3PO4 + 3 mol L‒1 KCl | C2+ | 40 | 12 | 77 | [ |
ER-CuNS | 0.05 mol L‒1 H2SO4 +3 mol L‒1 KCl | C2+ | 83.7 | 30 | 54.4 | [ |
Cu/PTFE/C | H2SO4 + 0.5 mol L‒1 K2SO4 | C2+ | 74 | 50 | none | [ |
Pd-Cu | H2SO4 + 0.5 mol L‒1 K2SO4 | C2+ | 80 | 4.5 | 60 | [ |
CG-Cu | 0.2 mol L‒1 H2SO4 | C2+ | 80 | 155 | 90 | [ |
Cu-GDL | 1 mol L‒1 KCl + 1 mol L‒1 KOH + 1 mol L‒1 HCl | C2+ | 87 | 30 | 42 | [ |
CuOx-dendrites | H2SO4 + 0.5 mol L‒1 K2SO4 | C2+ | 77 | 50 | 26.8 | [ |
Table 2 Summary of reported eCO2R performances in acidic media.
Catalyst | Electrolyte | Major product | FE (%) | Stability (h) | SPCE (%) | Ref. |
---|---|---|---|---|---|---|
Ni5@NCN | 0.25 mol L‒1 Na2SO4 + H2SO4 | CO | 84.3 | 20 | none | [ |
Ag@C | H2SO4 + 0.5 mol L‒1 K2SO4 | CO | 95 | 9 | 46.2 | [ |
NiNF-1100 | H2SO4 + 0.05 mol L‒1 K2SO4 | CO | 90 | 30 | 78 | [ |
PTFE-Q/Ag | 0.1 mol L‒1 K2SO4 + 0.1 mol L‒1 H2SO4 | CO | 95.6 | 6.6 | none | [ |
PDDA-Ag | 0.1 mol L‒1 H2SO4 | CO | 95 | 36 | none | [ |
PDDA-GO-Ag | 0.01 mol L‒1 H2SO4 | CO | 85 | 50 | none | [ |
BiNS | 0.05 mol L‒1 H2SO4 +3 mol L‒1 KCl | HCOOH | 92.2 | 8 | none | [ |
Bi RS | 0.1 mol L‒1 H2SO4 + 0.5 mol L‒1 K2SO4 | HCOOH | 96.3 | 50 | 79 | [ |
SiC-NafionTM /SnBi/PTFE | 0.05 mol L‒1 H2SO4 + 3 mol L‒1 KCl | HCOOH | 92 | 125 | 65 | [ |
Cu6Sn5 | 0.05 mol L‒1 H2SO4+3 mol L‒1 KCl | HCOOH | 91 | 3300 | 77.4 | [ |
18-C-6/Cu | H2SO4 + 0.5 mol L‒1 K2SO4 | CH4 | 51.2 | 4.4 | 43 | [ |
Cu/PFSA | 1 mol L‒1 H3PO4 + 3 mol L‒1 KCl | C2+ | 40 | 12 | 77 | [ |
ER-CuNS | 0.05 mol L‒1 H2SO4 +3 mol L‒1 KCl | C2+ | 83.7 | 30 | 54.4 | [ |
Cu/PTFE/C | H2SO4 + 0.5 mol L‒1 K2SO4 | C2+ | 74 | 50 | none | [ |
Pd-Cu | H2SO4 + 0.5 mol L‒1 K2SO4 | C2+ | 80 | 4.5 | 60 | [ |
CG-Cu | 0.2 mol L‒1 H2SO4 | C2+ | 80 | 155 | 90 | [ |
Cu-GDL | 1 mol L‒1 KCl + 1 mol L‒1 KOH + 1 mol L‒1 HCl | C2+ | 87 | 30 | 42 | [ |
CuOx-dendrites | H2SO4 + 0.5 mol L‒1 K2SO4 | C2+ | 77 | 50 | 26.8 | [ |
Fig. 2. Effect of cations on electric field distribution in electric bilayer. Schemes of double layer near cathode with cations (a) and without cations (b). Reprinted with permission from Ref. [56]. Copyright 2022, Springer Nature. (c) Schematic of alkali cation effects on the mass transport of H+ and the kinetics of CO2 reduction in acidic solution. The blue region represents the stern layer and the green region represents the diffuse and diffusion layers. (d) Plots of electric field strength in the stern layer based on the electrode potential in solutions containing 10 mmol L?1 HClO4 and 10 mmol L?1 MClO4 (M = Li, Na, K, Cs). Reprinted with permission from Ref. [57]. Copyright 2023, American Chemical Society. (e) In acidic solutions without and with alkali cations, the pH distribution near the cathode occurs when H+ reduction reaches the platform current density. Reprinted with permission from Ref. [58]. Copyright 2023, Elsevier. (f) Modeling of pH at different distances to cathode and current density in 1 mol L?1 H3PO4 and 3 mol L?1 KCl. Reprinted with permission from Ref. [20]. Copyright 2021, American Association for the Advancement of Science.
Fig. 3. (a) Schematic representation of the interaction of the cation with the negatively charged CO2- intermediate. Reprinted with permission from Ref. [45]. Copyright 2021, Springer Nature. (b) Schematic illustration of eCO2R at Au-water interfaces. eCO2R in AM+-free medium and medium with AM+ are shown on the left and right. The parallel red-dashed line represents the boundary of OS-ET and IS-ET. Reprinted with permission from Ref. [61]. Copyright 2023, Springer Nature.
Fig. 4. (a) pH Environment and ions transported around the Ni5@NCN catalyst. Reprinted with permission from Ref. [68]. Copyright 2022, American Chemical Society. (b) Schematic of the local reaction environment and ion transport on the Ag@C catalyst. Reprinted with permission from Ref. [69]. Copyright 2023, Royal Society of Chemistry. (c) The schematic illustrations of Cu HPE show the processes of CO2 electroreduction. (d) A reaction energy diagram for *CO to *OCCHO via the *CO + *CHO coupling pathway on Cu, Cu-H+, Cu-[K(H2O)6]+, and Cu-H+-[K(H2O)6]+. Reprinted with permission from Ref. [71]. Copyright 2024, Royal Society of Chemistry. (e) Surface K+ density and current density distributions on the surface of Au needles. The tip radius is 5 nm. Reprinted with permission from Ref. [79]. Copyright 2016, Springer Nature. (f) Adsorbed K+ and the electric field intensity at the tip, revealing that both adsorbed K+ and electrostatic field intensity increase as the tip radius decreases. Reprinted with permission from Ref. [80]. Copyright 2019, Wiley-VCH. (g) SEM image of CuOx-dendrites. (h) FE of various products at various biases collected in a flow cell of CuOx-dendrites. (i) In situ Raman spectra of CuOx-dendrites during the CO2R. Reprinted with permission from Ref. [81]. Copyright 2024, Royal Society of Chemistry.
Fig. 5. (a) Gibbs free energy diagrams of the eCO2R to HCOOH on the Bi (001) facet in the absence or presence of K+ cations. (b) Schematic diagram of eCO2R selectivity in acid modulated by K+ cations. Reprinted with permission from Ref. [84]. Copyright 2022, American Chemical Society. (c) ECSA-normalized K+ number on F-CuNS and ER-CuNS. (d) K+ distribution on ER-CuNS models obtained from COMSOL Multiphysics finite-element-based simulations. Reprinted with permission from Ref. [86]. Copyright 2022, Springer Nature.
Fig. 6. (a) The thickness of the diffusion layer varies with the mass ratio of PTFE to the diffusion layer. Reprinted with permission from Ref. [105]. Copyright 2022, Wiley-VCH. (b) Faradaic efficiencies of the electrodes with different contact angles. Reprinted with permission from Ref. [106]. Copyright 2023, Wiley-VCH. (c) Integral GDE with catalytic sites embedded within the intertwined carbon nanofibers of hierarchical porosity. (d) Catalytic stability of NiNF-1100 in H2SO4/K2SO4 (pH = 2, CK+ = 0.5 mol L?1). Reprinted with permission from Ref. [97]. Copyright 2023, Royal Society of Chemistry. (e) SEM image for high-density nanoneedles exhibiting a large contact angle (CA). (f) Relative Pz calculated toward 2φ and α. Pz is Laplace pressure, 2φ is apex angle and α is tilt angle of the needle. The more positive the Pz, the faster the gas diffuses. (g) jC2+ as a function of CCO2 (diluted gas is N2). Reprinted with permission from Ref. [109]. Copyright 2023, Springer Nature.
Fig. 7. (a) FE, total current density for different products of 35 min CO2 R in pH = 2 electrolyte by the Cu electrode (Cu) at -1.40 V and the Cu electrode with 10 mmol L-1 tolyl-pyr dissolved (Cu + 10 mmol L-1 tolyl-pyr) at -1.35, -1.41 and -1.45 V vs. RHE. (b) CVs of bare Cu RDE and Modified-Cu RDE in N2 saturated 0.1 mol L-1 KClO4/HClO4 (pH = 2.2) with different rotation rates. Reprinted with permission from Ref. [110]. Copyright 2023, Wiley-VCH. (c) Schematic illustration of ionic environment and transport near the catalyst surface functionalized by the PFSA ionomer. (d) FEs toward H2 and CO2R products as well as SPCE on CAL-modified Cu electrode at -1.2 A cm-2 with different CO2 flow rates. All experiments were performed using 1 mol L-1 H3PO4 + 3 mol L-1 KCl catholyte. Reprinted with permission from Ref. [20]. Copyright 2023, American Association for the Advancement of Science. (e) Simulated electric field strength over the distance from the outer Helmholtz plane (OHP). (f) Formation rate and KIE value of CH4 on Cu and Cu-3 catalysts at -1.05 V using 0.5 mol L-1 K2SO4 electrolyte with H2O or D2O as the solvent. Reprinted with permission from Ref. [112]. Copyright 2023, Wiley-VCH. (g) Application of the SiC-NafrionTM coated layer and the resulting regulated pH and ion concentrations near the catalyst surface. (h) CO2R chronopotentiometry curve with the HCOOH FE at -0.1 A cm-2 in a 0.05 mol L-1 H2SO4 and 3 mol L-1 KCl electrolyte at pH = 1. Reprinted with permission from Ref. [40]. Copyright 2023, Wiley-VCH.
Fig. 8. (a) The calculated adsorption energy of *OCHO, *COOH, and *H on Cu, Cu1?xSnx (x = 0.14, 0.44), and Sn catalysts. (b) In situ ATR-FTIR spectra were measured at different applied potentials for Cu6Sn5. (c) In situ ATR-FTIR spectra measured at different applied potentials for Sn. Reprinted with permission from Ref. [116]. Copyright 2024, Springer Nature. (d) SEM for Pd-Cu catalysts on PTFE. (e) Free energy diagram of CO2R via the CHO pathway toward C1 products (orange), where CH4 is used as the representative product, and the OCCOH pathway toward C2+ products (blue), where C2H4 is utilized as the representative product. Solid and dashed lines represent Pd-Cu and Cu, respectively. (f) FE values of all products on Pd-Cu catalysts under different applied current densities. Reprinted with permission from Ref. [32]. Copyright 2022, Springer Nature. (g) Schematic of the spatially decoupled strategy via tandem catalysis, showing the electron transfer and mass transport in acidic eCO2R. (h) Comparison of CO FE on CoPc@HC electrode and CoPc/C electrode in acidic eCO2R in an acidic buffer electrolyte of 0.5 mol L?1 H3PO4 and 0.5 mol L?1 KH2PO4 with 2.5 mol L?1 KCl in a flow cell. (i) FE values of eCO2R products on the CoPc@HC/Cu tandem electrode in an acidic buffer electrolyte of 0.5 mol L?1 H3PO4 and 0.5 mol L?1 KH2PO4 with 2.5 mol L?1 KCl in a flow cell. Reprinted with permission from Ref. [123]. Copyright 2023, Springer Nature.
Fig. 9. (a) Selectivity comparison of CG-low, CG-medium, and CG-high in 0.2 mol L-1 H2SO4 solution at a current density of -0.1 A cm-2. (b) SPCE of CO2 at various flow rates. (c) Electric field comparison of H+, K+, and immobilized CG at OHP. Reprinted with permission from Ref. [43]. Copyright 2023, Springer Nature. (d) FE of CO during electrolysis with a constant current density of -0.2 A cm-2. (e) The migration rate of H+ with the electrode potential of -1.8 V vs. SHE at 2 μm from OHP. (f) Plots of the electric field strength in the Stern layer based on the electrode potential. Reprinted with permission from Ref. [124]. Copyright 2023, Springer Nature. (g) Zeta potentials of PDDA, GO, and PDDA-GO dispersed in deionized water. (h) Schematic illustration of the interface modulation effect of the PDDA-GO modification layer. (i) CO FEs of PDDA-GO-, PDDA- or GO-modified Ag catalysts at different applied current densities together with the corresponding full-cell voltages of PDDA-GO-modified Ag. Reprinted with permission from Ref. [125]. Copyright 2024, Wiley-VCH.
|
[1] | 任清汇, 徐亮, 吕梦雨, 张秩远, 栗振华, 邵明飞, 段雪. 电催化还原反应中的阳离子效应:最新进展[J]. 催化学报, 2024, 63(8): 16-32. |
[2] | 朱鸿睿, 徐慧民, 黄陈金, 张志杰, 詹麒尼, 帅婷玉, 李高仁. 光电催化析氧和CO2还原反应催化剂的研究进展[J]. 催化学报, 2024, 62(7): 53-107. |
[3] | 孟爱云, 马辛源, 温达, 钟威, 周双, 苏耀荣. 高选择性H2O2光合成: Ba原子注入面内高度有序结晶结构的g-C3N4纳米棒[J]. 催化学报, 2024, 60(5): 231-241. |
[4] | 王杰, 陈怡和, 王宇达, 赵浩, 叶进裕, 程庆庆, 杨辉. 调控Ru的电子态以促进乙烯在酸中高选择性电氧化合成乙二醇[J]. 催化学报, 2024, 60(5): 376-385. |
[5] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[6] | 王娇, 朱芳芳, 陈必义, 邓爽, 胡博琛, 刘洪, 武猛, 郝金辉, 李龙华, 施伟东. B原子掺杂调控CuIn纳米合金电子结构以实现电化学CO2还原宽电位活性[J]. 催化学报, 2023, 49(6): 132-140. |
[7] | 蒋亚飞, 刘锦程, 许聪俏, 李隽, 肖海. 打破合成氨反应中线性标度关系的碗型活性位点设计: 来自LaRuSi及其同构电子化物的启示[J]. 催化学报, 2022, 43(8): 2183-2192. |
[8] | 郑汉, 杨正午, 孔祥栋, 耿志刚, 曾杰. 二氧化碳电还原为甲烷的研究进展[J]. 催化学报, 2022, 43(7): 1634-1641. |
[9] | Ernest Pahuyo Delmo, 王忆安, 王菁, 朱尚乾, 李铁怀, 秦雪苹, 田一博, 赵青蓝, Juhee Jang, 王一诺, 谷猛, 张莉莉, 邵敏华. 金属有机框架-离子液体混合催化剂用于电化学还原二氧化碳生成甲烷[J]. 催化学报, 2022, 43(7): 1687-1696. |
[10] | 王梦茹, 王奕, 牟效玲, 林荣和, 丁云杰. 1,3-丁二烯选择性加氢催化剂的设计策略以及构效关系[J]. 催化学报, 2022, 43(4): 1017-1041. |
[11] | 吴建祥, 杨雪晶, 龚鸣. 甘油电催化氧化的研究进展:催化剂、机理和应用[J]. 催化学报, 2022, 43(12): 2966-2986. |
[12] | 郭凯, 雷海涛, 李夏亮, 张宗尧, 王亚博, 郭鸿波, 张伟, 曹睿. 碱金属阳离子对铁卟啉电催化CO2还原的影响[J]. 催化学报, 2021, 42(9): 1439-1444. |
[13] | 陈霄, 石闯, 梁长海. 炔醇选择加氢催化剂研究进展[J]. 催化学报, 2021, 42(12): 2105-2121. |
[14] | 王敏, 解琦, 陈会敏, 刘光波, 崔学晶, 姜鲁华. N,O共修饰的Ni纳米颗粒/氮掺杂介孔碳CO2高效电还原催化剂[J]. 催化学报, 2021, 42(12): 2306-2312. |
[15] | 程蕾, 张岱南, 廖宇龙, 范佳杰, 向全军. 三维分等级花状Cd0.8Zn0.2S的结构调控及其光催化CO2还原[J]. 催化学报, 2021, 42(1): 131-140. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||