催化学报 ›› 2024, Vol. 63: 61-80.DOI: 10.1016/S1872-2067(24)60073-2

• 综述 • 上一篇    下一篇

提高酸性CO2电解的选择性:阳离子效应和催化剂创新

黄子超, 杨婷惠, 张颖冰, 管超群, 桂文科, 况敏*(), 杨建平*()   

  1. 东华大学材料科学与工程学院, 纤维材料改性国家重点实验室, 上海 201620
  • 收稿日期:2024-04-12 接受日期:2024-06-11 出版日期:2024-08-18 发布日期:2024-08-19
  • 通讯作者: *电子信箱: jianpingyang@dhu.edu.cn (杨建平),mkuang@dhu.edu.cn (况敏).
  • 基金资助:
    国家自然科学基金项目(52122312);国家自然科学基金项目(22209024);上海市浦江计划项目(22PJ1400200);彤程研发基金(CPCIF-RA-0102);东华大学纤维材料改性国家重点实验室

Enhancing selectivity in acidic CO2 electrolysis: Cation effects and catalyst innovation

Zichao Huang, Tinghui Yang, Yingbing Zhang, Chaoqun Guan, Wenke Gui, Min Kuang*(), Jianping Yang*()   

  1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
  • Received:2024-04-12 Accepted:2024-06-11 Online:2024-08-18 Published:2024-08-19
  • Contact: *E-mail: jianpingyang@dhu.edu.cn (J. Yang), mkuang@dhu.edu.cn (M. Kuang).
  • About author:Min Kuang is currently a professor in the College of Materials Science and Engineering in Donghua University (China). She finished her PhD from Laboratory of Advanced Materials at Fudan University. After that, she joined the School of Materials Science and Engineering at Nanyang Technological University as a postdoctoral research associate. Her research interest is concentrating on developing advanced electrochemical C1-to-fuel conversion systems and the exploration of efficient electrocatalysts.
    Jianping Yang is appointed as a Professor and Associate Dean in the College of Materials Science and Engineering at Donghua University (China). He received his PhD in Inorganic Chemistry from Fudan University in 2013, and then worked as a postdoctoral and visiting research fellow at Tongji University, University of Wollongong and Monash University. His research interests include interfacial design of functional materials for environmental electrocatalysis, sustainable energy systems. Professor Yang has been admitted as a Fellow of the Royal Society of Chemistry (FRSC), and identified in the Highly Cited Researchers in Cross Field (2023) by Web of Science-Clarivate Analytics.
  • Supported by:
    National Natural Science Foundation of China(52122312);National Natural Science Foundation of China(22209024);Shanghai Pujiang Program(22PJ1400200);Tongcheng R&D Foundation(CPCIF-RA-0102);State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University

摘要:

随着全球人口持续增长和工业化加速, 化石能源的过度消耗导致了CO2过量排放, 引起全球气候变暖和一系列随之而来的生态环境问题. 可再生能源驱动的电催化CO2还原能够在温和的条件下将CO2转化为一系列的增值化学品, 是实现碳中和的有前景的技术之一. 为了提高产物的选择性, 电催化CO2还原通常在中性和碱性介质中进行. 然而, 在反应过程中CO2不可避免地会在阴极转化为碳酸盐, 降低了CO2还原的效率. 酸性介质作为一种解决方案, 可以解决碳酸盐问题, 但引入了析氢反应的问题, 降低了酸性环境下CO2的转化效率. 目前, 在平衡碳效率和CO2还原性能之间存在挑战, 因此, 本文在总结近年来酸性电催化CO2还原工作的基础上, 对催化剂的设计方法进行了综述.

本文从阳离子效应和催化剂设计两方面综述了近年来酸性介质中CO2电解研究的主要进展, 强调了提高酸性介质中CO2电解选择性的必要性. 首先简要回顾了酸性介质中CO2电解的发展历程, 讨论了该领域面临的挑战, 即快速的析氢反应以及严苛的反应环境. 随后, 进一步阐明了碱金属阳离子(Li, Na, K和Cs)在酸性介质中的作用. 碱金属阳离子能够最大限度地富集CO2, 通过稳定关键中间体和调节溶液中H+的扩散来改善CO2还原的动力学. 在此基础上, 列举了通过催化剂设计直接或间接利用阳离子效应的例子, 包括催化剂形态设计、润湿性调节、功能材料改性以及串联结构的构建等. 此外, 还进一步介绍了无金属阳离子酸性介质中的电催化CO2还原结果. 最后展望了未来的发展方向, 构建更加高效、稳定的催化系统, 深入发展原位表征技术以及模拟计算方法以加深对反应机理的理解, 以及全方面拓展CO2还原技术将加速CO2还原的工业化进程.

综上, 本文对提高酸性CO2电解的选择性进行了综述, 相信能够为新型催化剂的研发提供思路. 总体而言, 电催化CO2还原从基础研究到工业应用的旅程充满了挑战. 尽管如此, 相信正在进行的研究将很快将大规模电催化CO2转化定位为全球碳循环可持续管理的关键战略.

关键词: 酸性二氧化碳电解, 高选择性, 阳离子效应, 催化剂设计, 竞争性析氢反应

Abstract:

The electrochemical reduction of CO2 (eCO2R) under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality. Despite progress with alkaline and neutral electrolytes, their efficiency is limited by (bi)carbonates formation. Acidic media have emerged as a solution, addressing the (bi)carbonates challenge but introducing the issue of the hydrogen evolution reaction (HER), which reduces CO2 conversion efficiency in acidic environments. This review focuses on enhancing the selectivity of acidic CO2 electrolysis. It commences with an overview of the latest advancements in acidic CO2 electrolysis, focusing on product selectivity and electrocatalytic activity enhancements. It then delves into the critical factors shaping selectivity in acidic CO2 electrolysis, with a special emphasis on the influence of cations and catalyst design. Finally, the research challenges and personal perspectives of acidic CO2 electrolysis are suggested.

Key words: Acidic CO2 electrolysis, High selectivity, Cation effects, Catalyst design, Competitive HER