催化学报 ›› 2024, Vol. 63: 202-212.DOI: 10.1016/S1872-2067(24)60074-4

• 论文 • 上一篇    下一篇

通过金属空位工程促进CO2光还原

王金龙a,b,1, 刘东妮a,b,1, 李铭洋a,b, 谷骁一a,b, 吴仕群a,b,*(), 张金龙a,b,*()   

  1. a华东理工大学化学与分子工程学院, 结构可控先进功能材料及其制备教育部重点实验室, 费林加诺贝尔奖科学家联合研究中心, 上海 200237
    b华东理工大学上海市多介质环境催化与资源化工程技术研究中心, 上海 200237
  • 收稿日期:2024-04-26 接受日期:2024-06-06 出版日期:2024-08-18 发布日期:2024-08-19
  • 通讯作者: *电子信箱: wushiqun@ecust.edu.cn (吴仕群),jlzhang@ecust.edu.cn (张金龙).
  • 作者简介:

    1共同第一作者.

  • 基金资助:
    国家重点研发计划(2022YFE0107900);国家重点研发计划(2022YFB3803600);国家自然科学基金(22202070);上海市教委创新计划(2021-01-07-00-02-E00106);上海市科委项目(22230780200);上海市科委项目(20DZ2250400);博士后创新人才支持计划(BX20220107);中国博士后科学基金(2022M720050);上海市科技启明星扬帆计划(22YF1410200);中央高校基本科研业务费(222201717003)

Boosting CO2 photoreduction by synergistic optimization of multiple processes through metal vacancy engineering

Jinlong Wanga,b,1, Dongni Liua,b,1, Mingyang Lia,b, Xiaoyi Gua,b, Shiqun Wua,b,*(), Jinlong Zhanga,b,*()   

  1. aKey Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
    bShanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, Shanghai 200237, China
  • Received:2024-04-26 Accepted:2024-06-06 Online:2024-08-18 Published:2024-08-19
  • Contact: *E-mail: wushiqun@ecust.edu.cn (S. Wu), jlzhang@ecust.edu.cn (J. Zhang).
  • About author:

    1Contributed equally to this work.

  • Supported by:
    National Key Research and Development Program of China(2022YFE0107900);National Key Research and Development Program of China(2022YFB3803600);National Natural Science Foundation of China(22202070);Innovation Program of Shanghai Municipal Education Commission(2021-01-07-00-02-E00106);Science and Technology Commission of Shanghai Municipality(22230780200);Science and Technology Commission of Shanghai Municipality(20DZ2250400);Postdoctoral Innovative Talent Support Program(BX20220107);China Postdoctoral Science Foundation(2022M720050);Shanghai Rising-Star Program(22YF1410200);Fundamental Research Funds for the Central Universities(222201717003)

摘要:

随着化石燃料不断消耗, 世界面临着严重的能源危机和环境恶化, 迫切需要可持续的解决方案. 利用太阳能将CO2光还原成可燃和可利用的化学物质, 是可持续和清洁能源转换的有效途径之一. In2O3是一种n型半导体, 具有光学特性、化学稳定性、成本效益、无毒性质, 在CO2光还原中广泛应用. 但In2O3光还原CO2的效果还不能令人满意, 这主要是由于CO2与光催化剂的相互作用弱, In2O3的电荷分离效率相对较差. 催化剂的缺陷工程是提高CO2光催化活性的关键策略, 目前, 大部分研究聚焦于金属氧化物催化剂的阴离子空位的构建, 但对金属空位及其效应的探索仍然不足.

本文通过直接溶剂热和煅烧法成功合成了具有高密度铟空位(VIn)的In2O3. 高角度环形暗场扫描透射电镜结果表明, 合成的In2O3材料均表现出高度结晶的颗粒结构. 紫外-可见光漫反射光谱结果表明, VIn的引入显著提高了催化剂的光吸收能力, 结合莫特肖特基(Mott-Schottky)曲线结果, 说明催化剂的能带结构合理, 导带位置满足光催化还原CO2的最低要求, VIn的引入有效地降低了禁带宽度且导带位置更负, In2O3的还原能力更强. 采用光致发光光谱、时间分辨光致发光光谱、光电流强度曲线和电化学阻抗曲线研究了催化剂的载流子分离行为, 结果表明, VIn的引入显著提高了光生载流子分离率和电子寿命. Rama光谱、高分辨率X射线光电子能谱、密度泛函理论(DFT)计算结果佐证了VIn的存在. VIn的引入明显提高了催化效率、表观量子效率和太阳能转化为化学能的效率. 原位漫反射红外傅里叶变换光谱和DFT计算结果表明, VIn作为CO2活化的活性位点, 有利于CO2吸附和关键中间体*COOH的形成, 且VIn可以降低CO2转化速率决定步骤的能垒, 促进CO产量的增加. 结果表明, 该催化剂的CO产率为841.32 μmol g‒1 h‒1, 是不含VIn的In2O3催化剂的7.4倍.

综上所述, 本文提供了一种构建金属空位的方法, 有效地提高了In2O3的光还原CO2活性, 丰富了金属空位对光催化CO2还原影响机制的理解, 为设计更有效的CO2还原光催化剂提供参考.

关键词: 光催化, 二氧化碳光还原, 氧化铟, 金属空位, 缺陷

Abstract:

The photoreduction of greenhouse gas CO2 using photocatalytic technologies not only benefits environmental remediation but also facilitates the production of raw materials for chemicals. However, the efficiency of CO2 photoreduction remains generally low due to the challenging activation of CO2 and the limited light absorption and separation of charge. Defect engineering of catalysts represents a pivotal strategy to enhance the photocatalytic activity for CO2, with most research on metal oxide catalysts focusing on the creation of anionic vacancies. The exploration of metal vacancies and their effects, however, is still underexplored. In this study, we prepared an In2O3 catalyst with indium vacancies (VIn) through defect engineering for CO2 photoreduction. Experimental and theoretical calculations results demonstrate that VIn not only facilitate light absorption and charge separation in the catalyst but also enhance CO2 adsorption and reduce the energy barrier for the formation of the key intermediate *COOH during CO2 reduction. Through metal vacancy engineering, the activity of the catalyst was 7.4 times, reaching an outstanding rate of 841.32 µmol g‒1 h‒1. This work unveils the mechanism of metal vacancies in CO2 photoreduction and provides theoretical guidance for the development of novel CO2 photoreduction catalysts.

Key words: Photocatalyst, CO2 photoreduction, Indium oxide, Metal vacancy, Defect