催化学报 ›› 2024, Vol. 63: 16-32.DOI: 10.1016/S1872-2067(24)60080-X
任清汇a, 徐亮b,*(), 吕梦雨a, 张秩远c, 栗振华a,c,*(), 邵明飞a,c,*(), 段雪a,c
收稿日期:
2024-03-06
接受日期:
2024-06-05
出版日期:
2024-08-18
发布日期:
2024-08-19
通讯作者:
*电子信箱: XL@buct.edu.cn (徐亮),LZH0307@mail.buct.edu.cn (栗振华),shaomf@mail.buct.edu.cn (邵明飞).
基金资助:
Qinghui Rena, Liang Xub,*(), Mengyu Lva, Zhiyuan Zhangc, Zhenhua Lia,c,*(), Mingfei Shaoa,c,*(), Xue Duana,c
Received:
2024-03-06
Accepted:
2024-06-05
Online:
2024-08-18
Published:
2024-08-19
Contact:
*E-mail: XL@buct.edu.cn to (L. Xu), LZH0307@mail.buct.edu.cn (Z. Li), shaomf@mail.buct.edu.cn (M. Shao).
About author:
Liang Xu received her PhD degree in Chemical Engineering and Technology from Beijing University of Chemical Technology (BUCT) (China) in 2019. She did postdoctoral research at the Institute of Chemistry, Chinese Academy of Sciences from 2020 to 2023. Then she served as a lecturer at BUCT. Her research interests mainly focus on the electrocatalytic conversion of CO2/NOx into high value-added chemicals.Supported by:
摘要:
近年来, 全球对于清洁能源技术的需求日益增长, 利用太阳能和风能等可再生能源驱动的电化学还原反应成为实现可持续化学生产的重要途径. 将廉价原料(如CO2, N2/NOx, 有机物, O2)升级为高附加值的化学品或燃料, 为能源转换和化学品生产提供了新的可能. 在过去几十年里, 为提高电化学还原反应活性, 研究人员开发和改良了许多种类的电催化剂. 然而, 仅依赖催化剂的优化提高催化性能仍存在局限性. 研究表明, 在电化学还原反应中, 电解质中阳离子的种类和浓度对反应活性和产物选择性有重要影响. 因此, 深入探讨阳离子效应在电催化还原反应中的作用机理及其应用对于推动清洁能源和绿色化学领域的电化学研究具有重要意义.
本文对阳离子效应在调控电化学还原反应活性和产物选择性的反应机理、表征手段、计算方法以及应用范围进行讨论, 并对该领域面临的挑战和未来发展进行了展望. 首先, 详细概括了阳离子效应在电化学还原反应过程中的机理, 包括促进反应物的吸附/稳定反应中间体、局部电场和界面pH的调控以及对氢析出对反应的影响. 其次, 全面总结了阳离子效应在电化学还原反应中的应用, 包括电催化二氧化碳还原反应、电催化氮气/硝酸根还原反应、电催化有机化合物还原反应以及氧还原反应. 通过上述反应展示了阳离子效应如何通过调节电催化反应的局部环境和反应路径, 有效地提升了电催化还原反应的活性和产物选择性, 进一步证明了在电催化还原领域深入研究和应用阳离子效应的重要性和潜力. 随后介绍了一系列针对阳离子效应研究的原位和非原位表征手段以及理论计算模拟的方法. 最后, 概述了阳离子效应在电催化反应中所面临的挑战, 并对未来的研究方向进行了展望, 主要挑战包括: (1) 在阳离子反应机理方面, 可以利用先进的技术手段更准确地揭示界面电场效应; (2) 在表征技术方面, 开发新的技术手段以识别特定反应/阳离子系统在操作条件下的主要机制; (3) 催化剂稳定性方面, 应开发新的方法和策略来优化电催化剂; (4) 催化剂设计策略方面, 应深入探索和发展先进的修饰策略(如非晶态单原子或双原子研究、范德华异质结、微环境调节、自旋态调节以及非晶态二维层状材料耦合等); (5) 开发阳离子效应在其他催化领域中的应用; (6) 发展阳离子效应在电催化氧化反应中的研究; (7) 深入研究电催化剂体相结构因阳离子插入而发生的动态变化.
综上所述, 本文深入系统地总结了阳离子效应对电催化还原反应的机理和应用, 并对该领域目前存在的挑战和未来的研究方向进行了展望, 以期为阳离子效应的应用提供基础认知和设计参考, 进而推动阳离子效应的快速发展.
任清汇, 徐亮, 吕梦雨, 张秩远, 栗振华, 邵明飞, 段雪. 电催化还原反应中的阳离子效应:最新进展[J]. 催化学报, 2024, 63: 16-32.
Qinghui Ren, Liang Xu, Mengyu Lv, Zhiyuan Zhang, Zhenhua Li, Mingfei Shao, Xue Duan. Cation effects in electrocatalytic reduction reactions: Recent advances[J]. Chinese Journal of Catalysis, 2024, 63: 16-32.
Fig. 4. (a) CO2RR in a medium containing alkali metal cations (AM+). (b) DFT-MD simulations of CO2 and electrode distances in different electrolytes. Reprinted with permission from Ref. [75], Copyright 2023, Springer Nature. (c) CO2RR product Faradaic efficiency (FE) and total current densities of Cu(OH)2 nanoparticles at -1.0 vs. RHE under various cations conditions. (d) Observation of *CO dynamics in Li+ through TR-SERS. Reprinted with permission from Ref. [76] Copyright 2023, American Chemical Society.
Fig. 5. (a) Free energy profile for the electroreduction of CO2 to CO on the Ag (111) electrode surfaces. (b) CO2 adsorption energy as a function of the field. Reprinted with permission from Ref. [57] Copyright 2016 American Chemical Society. (c) A higher hydrated Cs+ concentration on the outer Helmholtz plane induces a stronger interfacial electric field. (d) Normalized (to Li+) CO partial current density on Ag (110), Ag (111), and polycrystalline Ag (pc-Ag) at -1.0 V vs. RHE) in the presence of different alkali metal cations. Reprinted with permission from Refs. [56] Copyright 2019, Royal Society of Chemistry.
Fig. 6. (a) Effect of the cation radius on the local pH and pKa of cation hydrolysis. (b) The FE for CO increased and that for H2 decreased with increasing cation size owing to decreased polarization. Reprinted with permission from Ref. [77]. Copyright 2016, American Chemical Society. (c) Schematic of the pH test at the Au-electrolyte interface in situ using ATR-SEIRAS. (d) Steady-state pH at the metal-electrolyte interface during the electroreduction of CO2. Reprinted with permission from Ref. [82]. Copyright 2017, American Chemical Society.
Fig. 7. (a) Impact of multivalent cations on HER. (b) Relationship between the performance of CO2RR and HER and the ionic radius and acidity of the cations at high potentials. Reprinted with permission from Ref. [86]. Copyright 2021, American Chemical Society. (c) Schematic of the double layer near cathode in the electrolyte. (d) FE of formic acid on SnO2/C catalyst with different cations. Reprinted with permission from Ref. [79]. Copyright 2022, Springer Nature.
Catalyst | Reaction | |Current density (mA cm-2)|/Selectivity (%)/FE (%) | Ref. | ||||
---|---|---|---|---|---|---|---|
No added cations | Li+ | Na+ | K+ | Cs+ | |||
Ag GDE | CO2 to CO | 5.5/8 | 22/30 | 27/62 | 28/65 | 32/75 | [ |
Ag | CO2 to CO | - | - | 97/85 | 276/94 | 315/98 | [ |
Cu | CO2 to C2 | - | 4.7 | 5.1 | 6.6 | 8.5 | [ |
Au | CO2 to CO | - | 0.11 | 0.25 | 0.58 | 0.82 | [ |
Au | CO2 to CO | - | 0.76 | 0.9 | 0.98 | 1.6 | [ |
Ag | CO2 to CO | - | 3.8 | 4.9 | 6.6 | 8.3 | [ |
Cu | CO to C2 | - | 2.9/37 | 5.7/50 | 9.2/58 | 13/55 | [ |
Au | CO2 to CO | - | 0.03/3.1 | 0.79/19.5 | 1.02/50.2 | 1.04/49.1 | [ |
Ag | CO2 to CO | - | 3.5/81 | 8.6/91 | 12.1/97 | 12.5/98 | [ |
SnO2/C | CO2 to formic acid | - | 25.2 | 40.5 | 59.9 | 81.0 | [ |
Sn | NO3- to NH3 | - | 15 | 21 | 22 | 39 | [ |
Heat-carbon black | O2 to H2O2 | - | 0.53/76 | - | 0.74/90 | 1.27/93 | [ |
Pt | O2 to H2O2 | - | 0.64 | 0.79 | 0.90 | 0.56 | [ |
Carbon nanotube | O2 to H2O2 | 0.6/4.1 | - | 0.89/36.6 | - | - | [ |
Reduced graphene oxide | O2 to H2O2 | 5.7/10 | - | 150/41.4 | - | - | [ |
Pt5Gd | O2 to H2O2 | - | 4.8 | 2.7 | 2.5 | 2.0 | [ |
Pt (111) | O2 to H2O2 | - | 1.1 | 3.3 | 4.7 | 5.0 | [ |
TiO2 a | Oxalic acid to glycollic acid | 100/63.7 | 190/84.8 (Al3+) | 69.8 | 69.0 | 66.0 (Mg2+) | [ |
Table 1 The impact of cation species and concentration on electroreduction reactions activity.
Catalyst | Reaction | |Current density (mA cm-2)|/Selectivity (%)/FE (%) | Ref. | ||||
---|---|---|---|---|---|---|---|
No added cations | Li+ | Na+ | K+ | Cs+ | |||
Ag GDE | CO2 to CO | 5.5/8 | 22/30 | 27/62 | 28/65 | 32/75 | [ |
Ag | CO2 to CO | - | - | 97/85 | 276/94 | 315/98 | [ |
Cu | CO2 to C2 | - | 4.7 | 5.1 | 6.6 | 8.5 | [ |
Au | CO2 to CO | - | 0.11 | 0.25 | 0.58 | 0.82 | [ |
Au | CO2 to CO | - | 0.76 | 0.9 | 0.98 | 1.6 | [ |
Ag | CO2 to CO | - | 3.8 | 4.9 | 6.6 | 8.3 | [ |
Cu | CO to C2 | - | 2.9/37 | 5.7/50 | 9.2/58 | 13/55 | [ |
Au | CO2 to CO | - | 0.03/3.1 | 0.79/19.5 | 1.02/50.2 | 1.04/49.1 | [ |
Ag | CO2 to CO | - | 3.5/81 | 8.6/91 | 12.1/97 | 12.5/98 | [ |
SnO2/C | CO2 to formic acid | - | 25.2 | 40.5 | 59.9 | 81.0 | [ |
Sn | NO3- to NH3 | - | 15 | 21 | 22 | 39 | [ |
Heat-carbon black | O2 to H2O2 | - | 0.53/76 | - | 0.74/90 | 1.27/93 | [ |
Pt | O2 to H2O2 | - | 0.64 | 0.79 | 0.90 | 0.56 | [ |
Carbon nanotube | O2 to H2O2 | 0.6/4.1 | - | 0.89/36.6 | - | - | [ |
Reduced graphene oxide | O2 to H2O2 | 5.7/10 | - | 150/41.4 | - | - | [ |
Pt5Gd | O2 to H2O2 | - | 4.8 | 2.7 | 2.5 | 2.0 | [ |
Pt (111) | O2 to H2O2 | - | 1.1 | 3.3 | 4.7 | 5.0 | [ |
TiO2 a | Oxalic acid to glycollic acid | 100/63.7 | 190/84.8 (Al3+) | 69.8 | 69.0 | 66.0 (Mg2+) | [ |
Catalyst | Reaction | |Current density (mA cm-2)|/Selectivity (%)/FE (%) | Ref. | |
---|---|---|---|---|
Low concentration of M+ | High concentration of M+ | |||
Ag | CO2 to CO/formate | 6.2 (CO, 0.5 mol L‒1 KAc) 92.3 (formate, 0.5 mol L‒1 KAc) | 31.8 (CO, 10 mol L‒1 KAc) 66.4 (formate, 10 mol L‒1 KAc) | [ |
Cu | CO2 to CO/formate | 70.8 (CO, 0.5 mol L‒1 KAc) 8.7 (formate, 0.5 mol L‒1 KAc) | 28.7 (CO, 10 mol L‒1 KAc) 39.3 (formate, 10 mol L‒1 KAc) | [ |
Cu | CO2 to CO/C2H4 | 46.6 (CO, 0.05 mol L‒1 KOH) 8.7 (C2H4, 0.05 mol L‒1 KOH) | 2.5 (CO, 1 mol L‒1 KOH) 10.7 (C2H4, 1 mol L‒1 KOH) | [ |
CuNNAs CuNNs a | CO2 to C2 | 20.0 (CuNNAs as catalyst) | 59.0 (CuNNs as catalyst) | [ |
Au needle/Au particles a | CO2 to CO | 15.0 (Au needle as catalyst) | 98.6 (Au particles as catalyst) | [ |
Pd NTs/Pd@ArS-Pd4S NTs a | Alkyne to alkene | 51.7/70.6 (Pd NTs as catalyst) | 65.7/89.6 (Pd@ArS-Pd4S NTs as catalyst) | [ |
BiNCs | N2 to NH3 | 9.8 (0.2 mol L‒1 K+) | 66.5 (1.2 mol L‒1 K+) | [ |
heat-treated carbon black | O2 to H2O2 | 1.16 (0.1 mol L‒1 KCl) | 3.75 (0.5 mol L‒1 KCl) | [ |
Pt (111) | O2 to H2O2 | 4.3 (0.02 mol L‒1 methanesulfonic acid) | 0.8 (0.2 mol L‒1 methanesulfonic acid) | [ |
Table 2 Effect of cation concentration on electroreduction reaction activity.
Catalyst | Reaction | |Current density (mA cm-2)|/Selectivity (%)/FE (%) | Ref. | |
---|---|---|---|---|
Low concentration of M+ | High concentration of M+ | |||
Ag | CO2 to CO/formate | 6.2 (CO, 0.5 mol L‒1 KAc) 92.3 (formate, 0.5 mol L‒1 KAc) | 31.8 (CO, 10 mol L‒1 KAc) 66.4 (formate, 10 mol L‒1 KAc) | [ |
Cu | CO2 to CO/formate | 70.8 (CO, 0.5 mol L‒1 KAc) 8.7 (formate, 0.5 mol L‒1 KAc) | 28.7 (CO, 10 mol L‒1 KAc) 39.3 (formate, 10 mol L‒1 KAc) | [ |
Cu | CO2 to CO/C2H4 | 46.6 (CO, 0.05 mol L‒1 KOH) 8.7 (C2H4, 0.05 mol L‒1 KOH) | 2.5 (CO, 1 mol L‒1 KOH) 10.7 (C2H4, 1 mol L‒1 KOH) | [ |
CuNNAs CuNNs a | CO2 to C2 | 20.0 (CuNNAs as catalyst) | 59.0 (CuNNs as catalyst) | [ |
Au needle/Au particles a | CO2 to CO | 15.0 (Au needle as catalyst) | 98.6 (Au particles as catalyst) | [ |
Pd NTs/Pd@ArS-Pd4S NTs a | Alkyne to alkene | 51.7/70.6 (Pd NTs as catalyst) | 65.7/89.6 (Pd@ArS-Pd4S NTs as catalyst) | [ |
BiNCs | N2 to NH3 | 9.8 (0.2 mol L‒1 K+) | 66.5 (1.2 mol L‒1 K+) | [ |
heat-treated carbon black | O2 to H2O2 | 1.16 (0.1 mol L‒1 KCl) | 3.75 (0.5 mol L‒1 KCl) | [ |
Pt (111) | O2 to H2O2 | 4.3 (0.02 mol L‒1 methanesulfonic acid) | 0.8 (0.2 mol L‒1 methanesulfonic acid) | [ |
Fig. 8. (a) Relationship between adsorption K+ and reaction current density, and tip electric field intensity. (b) Current on different catalysts with a thin TiO2 insulator layer at a bias of -1 V. Reprinted with permission from Ref. [58]. Copyright 2016, Springer Nature. (c) Concentration of K+ and electric field at the tips of different nanoneedles. (d) The performance of CuNNs and CuNNAs. Reprinted with permission from Refs. [100]. Copyright 2022, American Chemical Society. (e) Mechanism of the CO2RR over the F-modified Cu catalyst. Reprinted with permission from Ref. [115]. Copyright 2020, Springer Nature.
Fig. 9. (a) ΔG*NNH on Bi (012), (110), and (104) facets with and without K+ cations. (b) Nitrogen reduction current density (jN), HER current density (jH), and total current density (jT) at different c(K+) values. (c) FE of NRR with different c(K+) values. Reprinted with permission from Ref. [102]. Copyright 2019. Springer Nature. Influence of different electrolytes on concentration of N species (d) and selectivity (e). Reprinted with permission from Ref. [12]. Copyright 2023, Elsevier B.V.
Fig. 10. (a) Conversions of 4-ethynylaniline and selectivity of 4-vinylaniline at -1.1 V vs. Hg/HgO. (b) ECSA-normalized linear sweep voltammetry (LSV) curves. (c) EPR trapping of hydrogen (*) and carbon (#) radicals. Reprinted with permission from Ref. [101]. Copyright 2022, American Association for the Advancement of Science. (d) Productivities and FEs of GA over TiO2 in 0.2 mol L-1 OX with different metal salts. (e) The adsorption of OX and GO over pure TiO2 and TiO2-Al3+ by electrochemical adsorbate-stripping measurements. (f) EPR trapping of hydrogen (#) radicals. Reprinted with permission from Ref. [88]. Copyright 2023, American Chemical Society.
Fig. 11. (a) Schematic of noncovalent bonding between hydrated alkali metal cations and surface-bound OH species. Reprinted with permission from Ref. [123]. Copyright 2009, Springer Nature. (b) Schematic of H+ repulsion by Na+. (c) Polarization curve of ORR for Pt/C supported on a glassy carbon electrode in O2-saturated 0.1 and 0.2 mol L?1 NaOH. Reprinted with permission from Ref. [125]. Copyright 2016 American Chemical Society. (d) The long-term galvanostatic charge-discharge profile of zinc-air cells assembled with different electrolytes. Reprinted with permission from Ref. [130]. Copyright 2021, American Chemical Society.
Fig. 12. Schematic of SHINERS. (a,b) Electromagnetic field distribution of SHINs on a Pd/Au substrate. Reprinted with permission from Ref. [135] Copyright 2021, Springer Nature. (c,d) Schematic illustration of ATR-SEIRAS. Reprinted with permission from Ref. [94]. Copyright 2020, American Chemical Society. Reprinted with permission from Ref. [111]. Copyright 2019, Elsevier Ltd. (e) Schematic illustration of the LICT. Reprinted with permission from Ref. [139]. Copyright 2022, John Wiley and Sons.
|
[1] | 肖佳勇, 蒋超, 张辉, 邢卓, 邱明, 余颖. 具有亲水性的无定形棒状核壳结构NiMoP@CuNWs用于中性介质中高效析氢[J]. 催化学报, 2024, 63(8): 154-163. |
[2] | 黄子超, 杨婷惠, 张颖冰, 管超群, 桂文科, 况敏, 杨建平. 提高酸性CO2电解的选择性:阳离子效应和催化剂创新[J]. 催化学报, 2024, 63(8): 61-80. |
[3] | 邵磊, 胡博琛, 郝金辉, 荆俊杰, 施伟东, 陈敏. 具有高曲率结构的枝晶状Cu/Cu2O在H型电解池中实现二氧化碳到C2产物的快速高效还原[J]. 催化学报, 2024, 63(8): 144-153. |
[4] | 李志鹏, 刘晓斌, 于青平, 屈欣悦, 万均, 肖振宇, 迟京起, 王磊. 用于高电流密度析氢反应电催化剂的研究进展[J]. 催化学报, 2024, 63(8): 33-60. |
[5] | 穆楠, 薄婷婷, 胡玉高, 徐瑞欣, 刘彦昱, 周伟. 基于铁电In2Se3极化切换的N2还原单原子催化剂[J]. 催化学报, 2024, 63(8): 244-257. |
[6] | 余灵辉, 张恒, Luyuan Paul Wang, Samuel Jun Hoong Ong, 席识博, 陈博, 郭瑞, 汪婷, 杜永华, 陈伟, Ovadia Lev, 徐梽川. 含氮/氧双元素碳催化剂调整硫正极在碳酸丙烯酯电解液中的氧化还原路径[J]. 催化学报, 2024, 63(8): 224-233. |
[7] | 陈春光, 张金锋, 褚海亮, 孙立贤, Graham Dawson, 代凯. 硫族化物基S型异质结光催化剂[J]. 催化学报, 2024, 63(8): 81-108. |
[8] | 霍韵滢, 郭聪, 张永乐, 刘婧怡, 张巧, 刘芝婷, 杨光星, 李仁贵, 彭峰. 自支撑Ni(OH)2/NF催化剂高效电催化氧化5-羟甲基糠醛反应研究[J]. 催化学报, 2024, 63(8): 282-291. |
[9] | 陈昕煜, 赵聪聪, 任静, 李波, 刘倩倩, 李葳, 杨帆, 陆思琦, 赵宇飞, 颜力楷, 臧宏瑛. 富含氧空位的由多金属氧簇辅助的银基异质结用于高效电催化固氮[J]. 催化学报, 2024, 62(7): 209-218. |
[10] | 梅子雯, 陈克军, 谭耀, 刘秋文, 陈琴, 王其忧, 汪喜庆, 蔡超, 刘康, 傅俊伟, 刘敏. 从富含缺陷的碳载体到酞菁钴的质子供给用于增强CO2电还原[J]. 催化学报, 2024, 62(7): 190-197. |
[11] | 杨树姣, 江鹏飞, 岳楷航, 郭凯, 杨璐娜, 韩金秀, 彭欣阳, 张学鹏, 郑浩铨, 杨韬, 曹睿, 严雅, 张伟. 多配位水分子的焦磷酸锰用于电催化水氧化研究[J]. 催化学报, 2024, 62(7): 166-177. |
[12] | 朱鸿睿, 徐慧民, 黄陈金, 张志杰, 詹麒尼, 帅婷玉, 李高仁. 光电催化析氧和CO2还原反应催化剂的研究进展[J]. 催化学报, 2024, 62(7): 53-107. |
[13] | 陈振霖, 薛静, 武磊, 党昆, 籍宏伟, 陈春城, 章宇超, 赵进才. 协同光电及热效应实现铜光阴极上等离激元催化高效硝酸根还原反应[J]. 催化学报, 2024, 62(7): 219-230. |
[14] | 刘青, 成雪峰, 霍锦艳, 刘小芳, 董慧龙, 曾宏波, 徐庆锋, 路建美. 调控N中间体与一维共轭配位聚合物的相互作用促进电催化硝酸盐还原产氨[J]. 催化学报, 2024, 62(7): 231-242. |
[15] | 刘洁宇, 郭海强, 熊钰林, 陈星, 于一夫, 王长洪. 基于DFT和机器学习的Pt单原子合金电催化剂的理性设计: 应用于NO至NH3的转化[J]. 催化学报, 2024, 62(7): 243-253. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||