催化学报 ›› 2024, Vol. 63: 144-153.DOI: 10.1016/S1872-2067(24)60079-3

• 论文 • 上一篇    下一篇

具有高曲率结构的枝晶状Cu/Cu2O在H型电解池中实现二氧化碳到C2产物的快速高效还原

邵磊, 胡博琛, 郝金辉, 荆俊杰, 施伟东*(), 陈敏*()   

  1. 江苏大学化学化工学院,江苏镇江 212013
  • 收稿日期:2024-03-20 接受日期:2024-05-31 出版日期:2024-08-18 发布日期:2024-08-19
  • 通讯作者: *电子信箱: swd1978@ujs.edu.cn (施伟东),chenmin3226@sina.com (陈敏)
  • 基金资助:
    国家自然科学基金(22225808);国家自然科学基金(22075111);中德合作集团项目(GZ1579);江苏省国际科技创新支撑计划合作项目(BZ2022045)

A dendritic Cu/Cu2O structure with high curvature enables rapid and efficient reduction of carbon dioxide to C2 in an H-cell

Lei Shao, Bochen Hu, Jinhui Hao, Junjie Jin, Weidong Shi*(), Min Chen*()   

  1. School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
  • Received:2024-03-20 Accepted:2024-05-31 Online:2024-08-18 Published:2024-08-19
  • Contact: *E-mail: swd1978@ujs.edu.cn (W. Shi), chenmin3226@sina.com (M. Chen).
  • Supported by:
    National Natural Science Foundation of China(22225808);National Natural Science Foundation of China(22075111);Sino-German Cooperation Group Project(GZ1579);Jiangsu Province Innovation Support Program International Science and Technology Cooperation Project(BZ2022045)

摘要:

将CO2电还原(CO2RR)转化为可再生燃料, 如CH4, C2H4, C2H5OH, 被认为是实现碳循环和储存可再生能源的有效途径. 与其他材料相比, 铜(Cu)基催化剂对*CO中间体具有合适的吸附能, 能够将CO2还原为多碳产物. 但是, Cu基催化剂在高电流密度(大于100 mA cm‒2)下的催化活性较低, 选择性较差, 这是亟待解决的问题. 通过Cu0/Cu+界面策略可以提高CO2RR为C2产物的选择性. 然而, 在H型电解池中, 由于传质限制, 高质子浓度的溶液容易引起析氢反应(HER), 同时催化剂表面发生的HER竞争反应也导致了产物电流密度的降低. 随着反应进行, 催化剂表面活性位点上CO2浓度逐渐降低, 而溶液中的CO2不能及时补充到催化剂表面, 进一步加剧了这一问题.

本文在CO2气氛下合成了具有高曲率结构的枝晶状Cu/Cu2O. 实验结果表明, 得到的枝晶状Cu/Cu2O不仅具有较高的C2H4 (51.42%)选择性, 而且C2类产物(如C2H4, C2H5OH等)的总选择性达到69.82%, 同时在H型电解池中具有较高C2H4 (95.3 mA cm‒2)和C2产物分电流密度(129.5 mA cm‒2). 有限元模拟计算结果表明, 具有高曲率结构的枝晶状Cu/Cu2O表面产生了增强的局部电场, 从而提高了催化剂表面局部CO2浓度. 结合弛豫时间分布分析结果, 发现高曲率的枝晶状结构能够主动吸附催化剂周围溶液环境中的CO2, 提高了反应的传质速率, 实现了还原过程中产物的高电流密度. 在实验过程中, 通过改变催化剂表面Cu0/Cu+的原子比, 研究电子结构对催化剂性能的影响. 在Cu0/Cu+的最佳原子比时, 电荷转移电阻最小, 中间体的解吸速率慢, 更有利于C2产物的生成. 密度泛函理论计算结果也表明, 在Cu0/Cu+界面处, 将CO2还原为C2的关键步骤(即决速步骤)所涉及反应中间体具有较低的吉布斯自由能, 从而促进了C2H4形成. Cu/Cu2O催化剂还具有较低的Cu的d能带中心, 增强了*CO在催化剂表面的吸附稳定性, 促进了C2产物的形成, 因此在快速传质条件下, Cu0/Cu+界面获得的是C2产物. 最后, 利用净现值模型计算了H型电解池工业应用的经济可行性, 结果表明, H型电解池是否具有广阔的工业前景, 取决于催化剂是否同时具有高选择性和高电流密度的能力.

综上所述, 将特殊形貌与催化剂成分相结合的设计策略, 不仅可以将两者的优势相结合, 还实现了单一条件时难以达到的效果, 显著提升了CO2RR催化剂的性能. 本研究将对CO2RR催化剂的设计和实际应用提供参考.

关键词: CO2还原反应, 高电流, 枝晶状结构;, Cu/Cu2O, H型电解池

Abstract:

Electrocatalytic reduction of CO2 (CO2RR) to multicarbon products is an efficient approach for addressing the energy crisis and achieving carbon neutrality. In H-cells, achieving high-current C2 products is challenging because of the inefficient mass transfer of the catalyst and the presence of the hydrogen evolution reaction (HER). In this study, dendritic Cu/Cu2O with abundant Cu0/Cu+ interfaces and numerous dendritic curves was synthesized in a CO2 atmosphere, resulting in the high selectivity and current density of the C2 products. Dendritic Cu/Cu2O achieved a C2 Faradaic efficiency of 69.8% and a C2 partial current density of 129.5 mA cm‒2 in an H-cell. Finite element simulations showed that a dendritic structure with a high curvature generates a strong electric field, leading to a localized CO2 concentration. Additionally, DRT analysis showed that a dendritic structure with a high curvature actively adsorbed the surrounding high concentration of CO2, enhancing the mass transfer rate and achieving a high current density. During the experiment, the impact of the electronic structure on the performance of the catalyst was investigated by varying the atomic ratio of Cu0/Cu+ on the catalyst surface, which resulted in improved ethylene selectivity. Under the optimal atomic ratio of Cu0/Cu+, the charge transfer resistance was minimized, and the desorption rate of the intermediates was low, favoring C2 generation. Density functional theory calculations indicated that the Cu0/Cu+ interfaces exhibited a lower Gibbs free energy for the rate-determining step, enhancing C2H4 formation. The Cu/Cu2O catalyst also exhibited a low Cu d-band center, which enhanced the adsorption stability of *CO on the surface and facilitated C2 formation. This observation explained the higher yield of C2 products at the Cu0/Cu+ interface than that of H2 under rapid mass transfer. The results of the net present value model showed that the H-cell holds promising industrial prospects, contingent upon it being a catalyst with both high selectivity and high current density. This approach of integrating the structure and composition provides new insights for advancing the CO2RR towards high-current C2 products.

Key words: Reduction of CO2, High current, Dendritic structure, Cu/Cu2O, H-cell