催化学报 ›› 2024, Vol. 63: 33-60.DOI: 10.1016/S1872-2067(24)60076-8
李志鹏a, 刘晓斌a,*(), 于青平a,b, 屈欣悦a, 万均a, 肖振宇a,*(), 迟京起a, 王磊a,b,*()
收稿日期:
2024-05-04
接受日期:
2024-06-04
出版日期:
2024-08-18
发布日期:
2024-08-19
通讯作者:
*电子信箱: inorchemwl@qust.edu.cn (王磊),liuxb@qust.edu.cn (刘晓斌),inorgxiaozhenyu@163.com (肖振宇).
基金资助:
Zhipeng Lia, Xiaobin Liua,*(), Qingping Yua,b, Xinyue Qua, Jun Wana, Zhenyu Xiaoa,*(), Jingqi Chia, Lei Wanga,b,*()
Received:
2024-05-04
Accepted:
2024-06-04
Online:
2024-08-18
Published:
2024-08-19
Contact:
*E-mail: inorchemwl@qust.edu.cn (L. Wang), liuxb@qust.edu.cn (X. Liu), inorgxiaozhenyu@163.com (Z. Xiao).
About author:
Xiaobin Liu received his PhD from University of Science and Technology Beijing in 2020. He is currently an associate professor at Qingdao University of Science and Technology. His research interests focus on the synthesis of nanomaterials and their application in the field of electrochemical energy storage and conversion.Supported by:
摘要:
利用可再生能源将水电解生产“绿氢”是一种具有很大潜力的清洁能源生产技术, 被认为是实现碳中和以及未来能源系统转型的核心. 在过去的几十年里, 尽管研究人员报道了众多与商业Pt/C催化剂性能相当, 用于析氢反应(HER)的电催化剂, 但多数因测试电流密度较低, 无法满足实际工业生产的要求. 为了实现电解水制氢的工业化应用, 亟需开发可以在高电流密度(HCD≥500 mA cm-2)下高效运行的HER电催化剂. 然而, 合理设计此类电催化剂仍面临诸多挑战.
本综述梳理了HCD条件下HER电催化剂的研究进展和设计策略, 并对该领域的未来发展进行了展望. 针对HCD条件下HER电催化剂面临的挑战, 归纳总结了多种有效的设计策略. 电催化剂的形貌、尺寸等因素对催化活性位点的暴露数量影响较大, 尤其是在HCD条件下, 对电子转移和传质过程有更高的要求. 一些特殊的导电基底(如泡沫镍、泡沫铁、泡沫铜和碳布等)通常有较高的孔隙率, 可以暴露更多活性位点, 加速传质过程. 此外, 调控电催化剂的组分可以调整其电子结构, 从而优化反应中间体的吸附能, 提高催化活性. 此外, 还从电解质与电催化剂的相互作用、电催化剂的尺寸效应、微观结构和宏观结构、电子转移过程、表面性质等方面进一步总结分析了用于HCD的HER电催化剂设计策略. 总结了多种不同组分的HER电催化剂的优缺点和合成方法,并根据电催化剂组分的不同, 将其分类为合金、金属氧化物、金属氢氧化物、金属硫化物/硒化物、金属氮化物、金属磷化物及其他电催化剂, 概述了近几年HCD条件下获得优异HER催化性能的相关研究, 重点从机理角度分析了上述HCD电催化剂性能优异的原因. 最后, 针对用于HCD的HER电催化剂的未来发展进行了展望. 未来研究应聚焦于设计策略间的协同效应与相互作用, 以推动性能优化. 同时, 工业应用潜力作为关键评价指标, 应通过构建模拟工业环境的电解槽来深入评估, 以确保其在实际生产中的有效性.
综上, 本文对HCD条件下HER电催化剂的研究进展进行了系统归纳, 并展望了其未来发展方向. 深入探索各设计策略间的协同效应, 并准确评估其工业应用潜力, 是推动该技术发展的关键所在. 特别是, 通过构建模拟工业环境的电解槽来评估HCD电催化剂的实际应用潜力, 对于其工业化应用进程至关重要. 本文旨在为HCD条件下HER电催化剂的制备与研究提供有价值的参考与借鉴.
李志鹏, 刘晓斌, 于青平, 屈欣悦, 万均, 肖振宇, 迟京起, 王磊. 用于高电流密度析氢反应电催化剂的研究进展[J]. 催化学报, 2024, 63: 33-60.
Zhipeng Li, Xiaobin Liu, Qingping Yu, Xinyue Qu, Jun Wan, Zhenyu Xiao, Jingqi Chi, Lei Wang. Recent advances in design of hydrogen evolution reaction electrocatalysts at high current density: A review[J]. Chinese Journal of Catalysis, 2024, 63: 33-60.
Fig. 2. Four effective strategies for designing electrocatalysts at HCD. Reprinted with permission from Ref. [24]. Copyright 2022, American Chemical Society. Reprinted with permission from Ref. [25]. Copyright 2021, Royal Society of Chemistry, Reprinted with permission from Ref. [26]. Copyright 2020, Elsevier, Reprinted with permission from Ref. [27]. Copyright 2023, Elsevier, Reprinted with permission from Ref. [28]. Copyright 2021, Elsevier.
Fig. 4. (a) The three most fundamental factors that affect catalytic performance. (b) Schematic of the catalytic cycle of H2 evolution over Ru/ac-CeO2?δ, Reprinted with permission from Ref. [54]. Copyright 2023, John Wiler and Sons. (c) Schematic illustration of Ni0.2Mo0.8N/Ni hierarchical arrays. Reprinted with permission from Ref. [55]. Copyright 2020, Royal Society of Chemistry. (d) Schematic illustration of OH functionality in promoting HER through forming strong non-covalent hydrogen bonding to the reactants. Reprinted with permission from Ref. [56]. Copyright 2020, Springer Nature, (e) DOS of Ni3S2-Pd4S and other samples. Reprinted with permission from Ref. [57]. Copyright 2022, American Chemical Society, (f) The calculated ΔGH* of NiMnFeMo. Reprinted with permission from Ref. [51]. Copyright 2021, Royal Society of Chemistry. (g) Schematic representation of Co-O-Mo active site changes. Reprinted with permission from Ref. [58]. Copyright 2022, Elsevier.
Fig. 5. (a) Schematic diagram of electrocatalyst dimension. (b) Schematic illustration for the synthesis of PtNP/p-GO, Reprinted with permission from Ref. [67]. Copyright 2023, Elsevier. (c) TEM image and particle size distribution statistics of RuNP-RuSA@CFN-800. (d,e) HRTEM images of RuNP-RuSA@CFN-800. Reprinted with permission from Ref. [68]. Copyright 2023, John Wiler and Sons.
Fig. 6. (a) Schematic diagram of nano, micro, and macro structures of electrocatalysts, (b) SEM image and (c) cross-sectional SEM image of Cr-CoxP. Reprinted with permission from Ref. [69]. Copyright 2023, John Wiler and Sons. Bubble releasing and surface wettability behavior of (d) NiFe LDHs/NF and (e) Ni3S2-NiFe LDHs/NF-2. Reprinted with permission from Ref. [70]. Copyright 2022, Elsevier.
Fig. 7. (a) Schematic diagram of surface chemistry of electrocatalysts. (b) The Pt L2-edge XANES spectra of Pt/N-CoWO3 and other samples. Reprinted with permission from Ref. [72]. Copyright 2024, John Wiler and Sons. (c) Schematic diagram of lattice strain of Bi2S3. (d) Schematic of the electron exchange for Bi2S3-9.7%. Reprinted with permission from Ref. [73]. Copyright 2022, John Wiler and Sons.
Fig. 8. The timeline illustrates the research on HCD electrocatalysts with excellent catalytic performance in recent years. Reprinted with permission from Ref. [83]. Copyright 2017, John Wiler and Sons. Reprinted with permission from Ref. [84]. Copyright 2018, American Chemical Society. Reprinted with permission from Ref. [85]. Copyright 2019, Elsevier. Reprinted with permission from Ref. [86]. Copyright 2020, Royal Society of Chemistry. Reprinted with permission from Ref. [87]. Copyright 2021, John Wiler and Sons. Reprinted with permission from Ref. [88]. Copyright 2022, Elsevier. Reprinted with permission from Ref. [40]. Copyright 2023, Elsevier.
Fig. 10. (a) XRD pattern of FeIr/NF, Reprinted with permission from Ref. [90]. Copyright 2021, Elsevier. (b) XPS spectra of FeIr/NF, Reprinted with permission from Ref. [91]. Copyright 2020, Elsevier. (c) LSV curves of H-FeCoNiMnW. Reprinted with permission from Ref. [92]. Copyright 2022, Elsevier. (d) XRD patterns of Ru-CoOx/NF and other samples. (e) XPS spectra of Co 2p of Ru-CoOx/NF and CoOx/NF. (f) Overpotential diagram of Ru-CoOx/NF and other samples. Reprinted with permission from Ref. [93]. Copyright 2021, Willey. (g) EIS impedance spectrum of Co-doped CeO2 nanosheets and other samples. Reprinted with permission from Ref. [94]. Copyright 2020, American Chemical Society. (h) Calculated ΔGH* on the surface of Fe3O4 and F,P-Fe3O4 for HER. Reprinted with permission from Ref. [25]. Copyright 2021, Royal Society of Chemistry.
Fig. 11. (a) Comparison of overpotential of NiCo/NiCo-OH. (b) Chronopotentiometric curves of NiCo/NiCo-OH and 20% Pt/C. Reprinted with permission from Ref. [100]. Copyright 2020, Elsevier. (c) LSV curves of NiFe-LDH/NF-x and other samples, Reprinted with permission from Ref. [101]. Copyright 2022, Elsevier. (d) Comparison of HER performance of A-NiCoLDH/NF and other electrocatalysts. (e) i-t curves of A-NiCo LDH/NF. Reprinted with permission from Ref. [26]. Copyright 2020, Elsevier. (f) Ti 2p and (g) Pt 4f for TiO2/Ni(OH)2/NF. Reprinted with permission from Ref. [88]. Copyright 2022, Elsevier. (h) Schematic diagram of the atomic model and sites of 1T-Co-MoS2@HMCS. Reprinted with permission from Ref. [102]. Copyright 2022, Royal Society of Chemistry. (i) EPR spectra of MoS2-P2. Reprinted with permission from Ref. [37]. Copyright 2022, Springer Nature.
Fig. 12. (a) DOS of CoS2-CoSe2, CoS2-Ni3Se2 and Ni3S2-Ni3Se2. Reprinted with permission from Ref. [106]. Copyright 2022, Elsevier. (b) Stability test of NC/Ni3Mo3N/NF. Reprinted with permission from Ref. [38]. Copyright 2022, Elsevier. (c) LSV curves of Co-Mo5N6 and other samples in 1.0 mol L?1 KOH and (d) in 1.0 mol L?1 buffer solution (pH = 7.0). Reprinted with permission from Ref. [107]. Copyright 2020, John Wiler and Sons. (e) Total density of states (TDOS) of Ni-Mn-FeP and Ni-FeP. Reprinted with permission from Ref. [108]. Copyright 2022, Royal Society of Chemistry. (f) over-potentials at different current densities of F-Co2P/Fe2P/IF. (g) Stability tests of F-Co2P/Fe2P/IF at different current densities in 1 mol L?1 KOH, Reprinted with permission from Ref. [109]. Copyright 2020, Elsevier.
Fig. 13. (a) In-situ Raman spectra and their 3D (b) and 2D (c) mapping images of CoP3-Nb2P/PCC. Reprinted with permission from Ref. [50]. Copyright 2022, Elsevier. (d) PDOS values of the d orbital and d-band center of NiCoSx@CoCH and other samples. Reprinted with permission from Ref. [118]. Copyright 2021, American Chemical Society. (e) LSV curves of Ni2P/WO2.83 and other samples. (f) Contact angle results on the surfaces of Ni2P/WO2.83 and other samples. Reprinted with permission from Ref. [24]. Copyright 2022, American Chemical Society. (g) In-situ FTIR spectra of PtNb-Nb2O5@CNT and Pt@CNT. (h) In-situ FTIR spectra of PtNb-Nb2O5@CNT after experiencing different times of HER Reprinted with permission from Ref. [119]. Copyright 2022, American Chemical Society
Electrocatalyst | Electrolyte | Overpotential (mV) | Electrocatalyst | Electrolyte | Overpotential (mV) | ||
---|---|---|---|---|---|---|---|
FeIr/NF [ | 1 mol L-1 KOH | 125 mV @500 mA cm-2 204 mV @1000 mA cm-2 336 mV @2000 mA cm-2 471 mV @3500 mA cm-2 | F-Co2P/Fe2P/IF [ | 1 mol L-1 KOH | 229.8 mV @500 mA cm-2 260.5 mV @1000 mA cm-2 292.2 mV @2000 mA cm-2 304.4 mV @3000 mA cm-2 | ||
IrFe/NC [ | 1 mol L-1 KOH | 850 mV @1000 mA cm-2 | Ni-Co-Fe-P NBs [ | 1 mol L-1 KOH | 190 mV @800 mA cm-2 | ||
FeIr/NF [ | 1 mol L-1 KOH | 246 mV @500 mA cm-2 327 mV @1000 mA cm-2 390 mV @1500 mA cm-2 461 mV @2000 mA cm-2 | CoP3-Nb2P/PCC [ | 1 mol L-1 KOH | 317 mV @500 mA cm-2 375 mV @1000 mA cm-2 | ||
PdNi-ECs/GS2 [ | 0.5 mol L-1 H2SO4 | 244 mV @1000 mA cm-2 | Ni12P5-Fe2P-NbP/PNF [ | 1 mol L-1 KOH | 331 mV @800 mA cm-2 | ||
hier-NiFe@sCNTs [ | 1 mol L-1 KOH | 159 mV @500 mA cm-2 | Ni5P4-Co2P/NCF [ | 1 mol L-1 KOH | 267 mV @1000 mA cm-2 | ||
FeCoPd [ | 1 mol L-1 KOH | 400 mV @1000 mA cm-2 | Co2P/Ni2P [ | 1 mol L-1 KOH 0.5 mol L-1 H2SO4 | 200 mV @1700 mA cm-2 200 mV @1000 mA cm-2 | ||
np-NiMnFeMo [ | 1 mol L-1 KOH | 178 mV @500 mA cm-2 | NiCoSx@CoCH NAs/NF [ | 1 mol L-1 KOH | 338.0 mV @500 mA cm-2 438.5 mV @1000 mA cm-2 | ||
H-FeCoNiMnW [ | 0.5 mol L-1 H2SO4 | 165 mV @500 mA cm-2 | Ni2P/WO2.83 [ | 1 mol L-1 KOH | 254.5 mV @1000 mA cm-2 | ||
NiCoFeMoMn [ | 1 mol L-1 KOH | 104 mV @500 mA cm-2 150 mV @1000 mA cm-2 | NiPS/NF [ | 1 mol L-1 KOH | 250 mV @500 mA cm-2 | ||
Co-doped CeO2 [ | 1 mol L-1 KOH | 215 mV @500 mA cm-2 | Ni-FeOx/FeNi3/NF [ | 1 mol L-1 KOH | 272 mV @500 mA cm-2 | ||
Ru-CoOx/NF [ | 1 mol L-1 KOH | 252 mV @1000 mA cm-2 | PtNb-Nb2O5@CC [ | seawater | 440 mV @500 mA cm-2 570 mV @1000 mA cm-2 | ||
NiO/RuO2/NF [ | 1 mol L-1 KOH | 178 mV @1000 mA cm-2 | (NixFeyCo6-x-y)Mo6C/NF [ | 1 mol L-1 KOH | 194 mV @500 mA cm-2 | ||
F,P-Fe3O4 [ | 1 mol L-1 KOH | 277.6 mV @500 mA cm-2 321.3 mV @1000 mA cm-2 350.1 mV @1500 mA cm-2 | 1T0.63-MoSe2@MoP [ | 1 mol L-1 KOH | 358 mV @1000 mA cm-2 | ||
NiFe-LDH/NF-x [ | 1 mol L-1 KOH | 330 mV @500 mA cm-2 | MoO2-MoP SE [ | 1 mol L-1 KOH | 362 mV @800 mA cm-2 | ||
NiCo/NiCo-OH [ | 1 mol L-1 KOH | 184 mV @500 mA cm-2 | NiMoFe NPs@MoO2 NPAs [ | 1 mol L-1 KOH | 130 mV @500 mA cm-2 | ||
NiCo2O4@NiCo(OH)2/ PNCF [ | 1 mol L-1 KOH | 691 mV @500 mA cm-2 | Cu NWs@NiFe-Pt3Ir [ | 1 mol L-1 KOH | 210 mV @500 mA cm-2 239 mV @1000 mA cm-2 | ||
Pt/TiO2/Ni(OH)2/NF [ | 1 mol L-1 KOH | 107 mV @500 mA cm-2 145 mV @1000 mA cm-2 184 mV @1500 mA cm-2 | TMP NiZn-Ni/NF [ | 1 mol L-1 KOH | 233 mV @600 mA cm-2 | ||
NiFe2O4/NiFe LDH [ | 1 mol L-1 KOH | 297 mV @500 mA cm-2 314 mV @750 mA cm-2 | NiCo@C-NiCoMoO/NF [ | 1 mol L-1 KOH | 266 mV @1000 mA cm-2 | ||
A-NiCo LDH/NF [ | 1 mol L-1 KOH | 286 mV @500 mA cm-2 381 mV @1000 mA cm-2 | CuAlNiMoFe [ | 1 mol L-1 KOH | 240 mV @1840 mA cm-2 | ||
MoS2-P2 [ | 1 mol L-1 KOH 0.5 mol L-1 H2SO4 1 mol L-1 PBS | 332 mV @500 mA cm-2 302 mV @500 mA cm-2 417 mV @500 mA cm-2 | c-CoNiPx/a-P-MnOy [ | 1 mol L-1 KOH | 321 mV @500 mA cm-2 | ||
N-NiMoS [ | 1 mol L-1 KOH | 250 mV @500 mA cm-2 322 mV @1000 mA cm-2 | Pt-CoFe(II)LDH [ | 1 mol L-1 KOH | 193 mV @500 mA cm-2 | ||
Pd4S-Ni3S2/HPNF [ | 1 mol L-1 KOH | 247 mV @500 mA cm-2 | NiFeLa-LDH/v-MXene/ NF [ | 1 mol L-1 KOH | 233 mV @500 mA cm-2 | ||
Fe-Co-Se/CC [ | 1 mol L-1 HClO4 | 215 mV @500 mA cm-2 | Co1Mn1CH [ | 1 mol L-1 KOH | 453 mV @500 mA cm-2 | ||
Fe7.4%-NiSe [ | 1 mol L-1 KOH | 296 mV @500 mA cm-2 | NiFe-LDH/MXene/NF [ | 1 mol L-1 KOH | 205 mV @500 mA cm-2 | ||
NiCoSxSey [ | 1 mol L-1 KOH | 256 mV @500 mA cm-2 345 mV @1000 mA cm-2 | Sn-Ni(OH)2 [ | 1 mol L-1 KOH | 550 mV @1000 mA cm-2 | ||
Co-Mo5N6 [ | 1 mol L-1 KOH | 280 mV @1000 mA cm-2 | MnCo/NiSe [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 182.8 mV @500 mA cm-2 211.6 mV @1000 mA cm-2 216.3 mV @500 mA cm-2 270.1 mV @1000 mA cm-2 | ||
Ni-W2N@NF [ | 1 mol L-1 KOH | 317 mV @2000 mA cm-2 | NC/Ni3Mo3N/NF [ | 1 mol L-1 KOH | 954 mV @1500 mA cm-2 | ||
MoN-Cu-NPC/CF [ | 1 mol L-1 KOH | 500 mV @668 mA cm-2 954 mV @1500 mA cm-2 | NiFe-P@NC [ | 1 mol L-1 KOH | 163 mV @500 mA cm-2 217 mV @1000 mA cm-2 | ||
Ni-Mn-FeP [ | 1 mol L-1 KOH | 243 mV @500 mA cm-2 | Ni3S2-NiMoO4/NF [ | 1 mol L-1 KOH | 257 mV @1000 mA cm-2 | ||
Macroporous CoFeP TPAs/Ni [ | 1 mol L-1 KOH | 263 mV @900 mA cm-2 | Fe2P@NixP/NF [ | 1 mol L-1 KOH with 0.5 mol L-1 urea | 276 mV @500 mA cm-2 | ||
Ni-Co2VO4/NF [ | 1 mol L-1 KOH with 0.5 mol L-1 urea | 267 mV @500 mA cm-2 329 mV @1000 mA cm-2 | NiFeCoCuTi [ | 1 mol L-1 KOH | 209 mV @2000 mA cm-2 | ||
Cr-CoP-NR/CC [ | 0.5 mol L-1 H2SO4 | 209 mV @500 mA cm-2 | NiCoP@FeNi LDH/NF [ | 1 mol L-1 KOH | 181 mV @500 mA cm-2 195 mV @1000 mA cm-2 | ||
Ni/W5N4/NF [ | 1 mol L-1 KOH | 291 mV @1000 mA cm-2 | MoWNiTe [ | 1 mol L-1 KOH | 182 mV @1000 mA cm-2 | ||
Ru&Fe-WOx [ | 1 mol L-1 KOH | 153 mV @500 mA cm-2 | Co-AlMO@NF [ | 1 mol L-1 KOH | 341 mV @600 mA cm-2 | ||
MFN-MOFs/NF [ | 1 mol L-1 KOH | 234 mV @500 mA cm-2 | Mo2N-Mo2C/N-CW [ | 0.5 mol L-1 H2SO4 | 311 mV @500 mA cm-2 | ||
NiCo(nf)-P [ | 1 mol L-1 KOH | 283 mV @500 mA cm-2 317 mV @1000 mA cm-2 | Pt-W18O49 [ | 0.5 mol L-1 H2SO4 | 743 mV @1000 mA cm-2 | ||
Co-NC-AF [ | 0.5 mol L-1 H2SO4 | 234 mV @500 mA cm-2 272 mV @1000 mA cm-2 | CoP/Ni3FeN [ | 1 mol L-1 KOH | 160 mV @1000 mA cm-2 | ||
In-situ F-Pt NCs [ | 1 mol L-1 KOH | 274 mV @500 mA cm-2 | P-Ni4Mo/CF [ | seawater + 1 mol L-1 KOH | 551 mV @1000 mA cm-2 | ||
3D Ni2(1-x)Mo2xP [ | 1 mol L-1 KOH | 240 mV @500 mA cm-2 294 mV @1000 mA cm-2 | WC/Ni(OH)2 [ | 1 mol L-1 KOH | 475 mV @1000 mA cm-2 | ||
NC@CrN/Ni [ | 1 mol L-1 KOH | 284 mV @1000 mA cm-2 | RuGa/N-rGO-2 [ | 1 mol L-1 KOH | 105 mV @500 mA cm-2 156 mV @1000 mA cm-2 | ||
Ni3S2@LiMoNiOx(OH)y [ | 1 mol L-1 KOH | 365 mV @1000 mA cm-2 | Co@NCNT/CW [ | 1 mol L-1 KOH | 263 mV @500 mA cm-2 | ||
Pt2/Ni(OH)2/NF [ | 1 mol L-1 KOH | 274 mV @1000 mA cm-2 | NiMoO4@NiFeP [ | 1 mol L-1 KOH | 353 mV @500 mA cm-2 | ||
NiMo [ | 1 mol L-1 KOH | 208 mV @500 mA cm-2 300 mV @1000 mA cm-2 | MnCo2S4@MoS2/NF [ | 6 mol L-1 KOH | 208 mV @1000 mA cm-2 | ||
Ni1Ru1/C [ | 1 mol L-1 KOH | 132 mV @500 mA cm-2 | Ru-Mo2C@CNT [ | 1 mol L-1 KOH | 56 mV @500 mA cm-2 78 mV @1000 mA cm-2 116 mV @2000 mA cm-2 | ||
Mo (NiFeCo)4/Ni [ | 1 mol L-1 KOH | 200 mV @2300 mA cm-2 | Ru-FeP4/IF [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 296 mV @1000 mA cm-2 318 mV @1000 mA cm-2 | ||
Fe-Co0.85Se/FeCo LDH [ | 1 mol L-1 KOH | 274 mV @2300 mA cm-2 | RuNi-Fe2O3/IF [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 298 mV @1000 mA cm-2 353 mV @1000 mA cm-2 | ||
FeCoNiCuMn [ | 1 mol L-1 KOH | 500 mV @921 mA cm-2 | MIL-(IrNiFe)@NF [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 156 mV @500 mA cm-2 198 mV @1000 mA cm-2 179 mV @500 mA cm-2 235 mV @1000 mA cm-2 | ||
Ir@Ni-NDC [ | 1 mol L-1 KOH | 205 mV @500 mA cm-2 | RuFe-Ni2P@NF [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 227 mV @500 mA cm-2 262 mV @1000 mA cm-2 274 mV @500 mA cm-2 310 mV @1000 mA cm-2 | ||
Ni3Sn2-NiSnOx [ | 1 mol L-1 KOH | 111 mV @500 mA cm-2 165 mV @1000 mA cm-2 | MoNi@NF [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 219 mV @1000 mA cm-2 238 mV @1000 mA cm-2 | ||
Ag@Pt icosahedral NCs [ | 0.5 mol L-1 H2SO4 | 145 mV @1000 mA cm-2 232 mV @4000 mA cm-2 | Ru/P-NiMoO4@NF [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 232 mV @3000 mA cm-2 299 mV @3000 mA cm-2 | ||
Co-Ni3N/NF [ | 1 mol L-1 KOH | 123 mV @500 mA cm-2 125 mV @1000 mA cm-2 | Fe/F-Ni2P@NC [ | seawater + 1 mol L-1 KOH | 323 mV @1000 mA cm-2 | ||
U-MoNiS [ | 1 mol L-1 KOH | 305 mV @2243 mA cm-2 | CoxPv@NC [ | seawater + 1 mol L-1 KOH | 206 mV @500 mA cm-2 232 mV @1000 mA cm-2 | ||
Fe-CoNiP@NC [ | seawater + 1 mol L-1 KOH | 280 mV @1000 mA cm-2 |
Table 1 Overview of advanced HCD electrocatalysts for HER.
Electrocatalyst | Electrolyte | Overpotential (mV) | Electrocatalyst | Electrolyte | Overpotential (mV) | ||
---|---|---|---|---|---|---|---|
FeIr/NF [ | 1 mol L-1 KOH | 125 mV @500 mA cm-2 204 mV @1000 mA cm-2 336 mV @2000 mA cm-2 471 mV @3500 mA cm-2 | F-Co2P/Fe2P/IF [ | 1 mol L-1 KOH | 229.8 mV @500 mA cm-2 260.5 mV @1000 mA cm-2 292.2 mV @2000 mA cm-2 304.4 mV @3000 mA cm-2 | ||
IrFe/NC [ | 1 mol L-1 KOH | 850 mV @1000 mA cm-2 | Ni-Co-Fe-P NBs [ | 1 mol L-1 KOH | 190 mV @800 mA cm-2 | ||
FeIr/NF [ | 1 mol L-1 KOH | 246 mV @500 mA cm-2 327 mV @1000 mA cm-2 390 mV @1500 mA cm-2 461 mV @2000 mA cm-2 | CoP3-Nb2P/PCC [ | 1 mol L-1 KOH | 317 mV @500 mA cm-2 375 mV @1000 mA cm-2 | ||
PdNi-ECs/GS2 [ | 0.5 mol L-1 H2SO4 | 244 mV @1000 mA cm-2 | Ni12P5-Fe2P-NbP/PNF [ | 1 mol L-1 KOH | 331 mV @800 mA cm-2 | ||
hier-NiFe@sCNTs [ | 1 mol L-1 KOH | 159 mV @500 mA cm-2 | Ni5P4-Co2P/NCF [ | 1 mol L-1 KOH | 267 mV @1000 mA cm-2 | ||
FeCoPd [ | 1 mol L-1 KOH | 400 mV @1000 mA cm-2 | Co2P/Ni2P [ | 1 mol L-1 KOH 0.5 mol L-1 H2SO4 | 200 mV @1700 mA cm-2 200 mV @1000 mA cm-2 | ||
np-NiMnFeMo [ | 1 mol L-1 KOH | 178 mV @500 mA cm-2 | NiCoSx@CoCH NAs/NF [ | 1 mol L-1 KOH | 338.0 mV @500 mA cm-2 438.5 mV @1000 mA cm-2 | ||
H-FeCoNiMnW [ | 0.5 mol L-1 H2SO4 | 165 mV @500 mA cm-2 | Ni2P/WO2.83 [ | 1 mol L-1 KOH | 254.5 mV @1000 mA cm-2 | ||
NiCoFeMoMn [ | 1 mol L-1 KOH | 104 mV @500 mA cm-2 150 mV @1000 mA cm-2 | NiPS/NF [ | 1 mol L-1 KOH | 250 mV @500 mA cm-2 | ||
Co-doped CeO2 [ | 1 mol L-1 KOH | 215 mV @500 mA cm-2 | Ni-FeOx/FeNi3/NF [ | 1 mol L-1 KOH | 272 mV @500 mA cm-2 | ||
Ru-CoOx/NF [ | 1 mol L-1 KOH | 252 mV @1000 mA cm-2 | PtNb-Nb2O5@CC [ | seawater | 440 mV @500 mA cm-2 570 mV @1000 mA cm-2 | ||
NiO/RuO2/NF [ | 1 mol L-1 KOH | 178 mV @1000 mA cm-2 | (NixFeyCo6-x-y)Mo6C/NF [ | 1 mol L-1 KOH | 194 mV @500 mA cm-2 | ||
F,P-Fe3O4 [ | 1 mol L-1 KOH | 277.6 mV @500 mA cm-2 321.3 mV @1000 mA cm-2 350.1 mV @1500 mA cm-2 | 1T0.63-MoSe2@MoP [ | 1 mol L-1 KOH | 358 mV @1000 mA cm-2 | ||
NiFe-LDH/NF-x [ | 1 mol L-1 KOH | 330 mV @500 mA cm-2 | MoO2-MoP SE [ | 1 mol L-1 KOH | 362 mV @800 mA cm-2 | ||
NiCo/NiCo-OH [ | 1 mol L-1 KOH | 184 mV @500 mA cm-2 | NiMoFe NPs@MoO2 NPAs [ | 1 mol L-1 KOH | 130 mV @500 mA cm-2 | ||
NiCo2O4@NiCo(OH)2/ PNCF [ | 1 mol L-1 KOH | 691 mV @500 mA cm-2 | Cu NWs@NiFe-Pt3Ir [ | 1 mol L-1 KOH | 210 mV @500 mA cm-2 239 mV @1000 mA cm-2 | ||
Pt/TiO2/Ni(OH)2/NF [ | 1 mol L-1 KOH | 107 mV @500 mA cm-2 145 mV @1000 mA cm-2 184 mV @1500 mA cm-2 | TMP NiZn-Ni/NF [ | 1 mol L-1 KOH | 233 mV @600 mA cm-2 | ||
NiFe2O4/NiFe LDH [ | 1 mol L-1 KOH | 297 mV @500 mA cm-2 314 mV @750 mA cm-2 | NiCo@C-NiCoMoO/NF [ | 1 mol L-1 KOH | 266 mV @1000 mA cm-2 | ||
A-NiCo LDH/NF [ | 1 mol L-1 KOH | 286 mV @500 mA cm-2 381 mV @1000 mA cm-2 | CuAlNiMoFe [ | 1 mol L-1 KOH | 240 mV @1840 mA cm-2 | ||
MoS2-P2 [ | 1 mol L-1 KOH 0.5 mol L-1 H2SO4 1 mol L-1 PBS | 332 mV @500 mA cm-2 302 mV @500 mA cm-2 417 mV @500 mA cm-2 | c-CoNiPx/a-P-MnOy [ | 1 mol L-1 KOH | 321 mV @500 mA cm-2 | ||
N-NiMoS [ | 1 mol L-1 KOH | 250 mV @500 mA cm-2 322 mV @1000 mA cm-2 | Pt-CoFe(II)LDH [ | 1 mol L-1 KOH | 193 mV @500 mA cm-2 | ||
Pd4S-Ni3S2/HPNF [ | 1 mol L-1 KOH | 247 mV @500 mA cm-2 | NiFeLa-LDH/v-MXene/ NF [ | 1 mol L-1 KOH | 233 mV @500 mA cm-2 | ||
Fe-Co-Se/CC [ | 1 mol L-1 HClO4 | 215 mV @500 mA cm-2 | Co1Mn1CH [ | 1 mol L-1 KOH | 453 mV @500 mA cm-2 | ||
Fe7.4%-NiSe [ | 1 mol L-1 KOH | 296 mV @500 mA cm-2 | NiFe-LDH/MXene/NF [ | 1 mol L-1 KOH | 205 mV @500 mA cm-2 | ||
NiCoSxSey [ | 1 mol L-1 KOH | 256 mV @500 mA cm-2 345 mV @1000 mA cm-2 | Sn-Ni(OH)2 [ | 1 mol L-1 KOH | 550 mV @1000 mA cm-2 | ||
Co-Mo5N6 [ | 1 mol L-1 KOH | 280 mV @1000 mA cm-2 | MnCo/NiSe [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 182.8 mV @500 mA cm-2 211.6 mV @1000 mA cm-2 216.3 mV @500 mA cm-2 270.1 mV @1000 mA cm-2 | ||
Ni-W2N@NF [ | 1 mol L-1 KOH | 317 mV @2000 mA cm-2 | NC/Ni3Mo3N/NF [ | 1 mol L-1 KOH | 954 mV @1500 mA cm-2 | ||
MoN-Cu-NPC/CF [ | 1 mol L-1 KOH | 500 mV @668 mA cm-2 954 mV @1500 mA cm-2 | NiFe-P@NC [ | 1 mol L-1 KOH | 163 mV @500 mA cm-2 217 mV @1000 mA cm-2 | ||
Ni-Mn-FeP [ | 1 mol L-1 KOH | 243 mV @500 mA cm-2 | Ni3S2-NiMoO4/NF [ | 1 mol L-1 KOH | 257 mV @1000 mA cm-2 | ||
Macroporous CoFeP TPAs/Ni [ | 1 mol L-1 KOH | 263 mV @900 mA cm-2 | Fe2P@NixP/NF [ | 1 mol L-1 KOH with 0.5 mol L-1 urea | 276 mV @500 mA cm-2 | ||
Ni-Co2VO4/NF [ | 1 mol L-1 KOH with 0.5 mol L-1 urea | 267 mV @500 mA cm-2 329 mV @1000 mA cm-2 | NiFeCoCuTi [ | 1 mol L-1 KOH | 209 mV @2000 mA cm-2 | ||
Cr-CoP-NR/CC [ | 0.5 mol L-1 H2SO4 | 209 mV @500 mA cm-2 | NiCoP@FeNi LDH/NF [ | 1 mol L-1 KOH | 181 mV @500 mA cm-2 195 mV @1000 mA cm-2 | ||
Ni/W5N4/NF [ | 1 mol L-1 KOH | 291 mV @1000 mA cm-2 | MoWNiTe [ | 1 mol L-1 KOH | 182 mV @1000 mA cm-2 | ||
Ru&Fe-WOx [ | 1 mol L-1 KOH | 153 mV @500 mA cm-2 | Co-AlMO@NF [ | 1 mol L-1 KOH | 341 mV @600 mA cm-2 | ||
MFN-MOFs/NF [ | 1 mol L-1 KOH | 234 mV @500 mA cm-2 | Mo2N-Mo2C/N-CW [ | 0.5 mol L-1 H2SO4 | 311 mV @500 mA cm-2 | ||
NiCo(nf)-P [ | 1 mol L-1 KOH | 283 mV @500 mA cm-2 317 mV @1000 mA cm-2 | Pt-W18O49 [ | 0.5 mol L-1 H2SO4 | 743 mV @1000 mA cm-2 | ||
Co-NC-AF [ | 0.5 mol L-1 H2SO4 | 234 mV @500 mA cm-2 272 mV @1000 mA cm-2 | CoP/Ni3FeN [ | 1 mol L-1 KOH | 160 mV @1000 mA cm-2 | ||
In-situ F-Pt NCs [ | 1 mol L-1 KOH | 274 mV @500 mA cm-2 | P-Ni4Mo/CF [ | seawater + 1 mol L-1 KOH | 551 mV @1000 mA cm-2 | ||
3D Ni2(1-x)Mo2xP [ | 1 mol L-1 KOH | 240 mV @500 mA cm-2 294 mV @1000 mA cm-2 | WC/Ni(OH)2 [ | 1 mol L-1 KOH | 475 mV @1000 mA cm-2 | ||
NC@CrN/Ni [ | 1 mol L-1 KOH | 284 mV @1000 mA cm-2 | RuGa/N-rGO-2 [ | 1 mol L-1 KOH | 105 mV @500 mA cm-2 156 mV @1000 mA cm-2 | ||
Ni3S2@LiMoNiOx(OH)y [ | 1 mol L-1 KOH | 365 mV @1000 mA cm-2 | Co@NCNT/CW [ | 1 mol L-1 KOH | 263 mV @500 mA cm-2 | ||
Pt2/Ni(OH)2/NF [ | 1 mol L-1 KOH | 274 mV @1000 mA cm-2 | NiMoO4@NiFeP [ | 1 mol L-1 KOH | 353 mV @500 mA cm-2 | ||
NiMo [ | 1 mol L-1 KOH | 208 mV @500 mA cm-2 300 mV @1000 mA cm-2 | MnCo2S4@MoS2/NF [ | 6 mol L-1 KOH | 208 mV @1000 mA cm-2 | ||
Ni1Ru1/C [ | 1 mol L-1 KOH | 132 mV @500 mA cm-2 | Ru-Mo2C@CNT [ | 1 mol L-1 KOH | 56 mV @500 mA cm-2 78 mV @1000 mA cm-2 116 mV @2000 mA cm-2 | ||
Mo (NiFeCo)4/Ni [ | 1 mol L-1 KOH | 200 mV @2300 mA cm-2 | Ru-FeP4/IF [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 296 mV @1000 mA cm-2 318 mV @1000 mA cm-2 | ||
Fe-Co0.85Se/FeCo LDH [ | 1 mol L-1 KOH | 274 mV @2300 mA cm-2 | RuNi-Fe2O3/IF [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 298 mV @1000 mA cm-2 353 mV @1000 mA cm-2 | ||
FeCoNiCuMn [ | 1 mol L-1 KOH | 500 mV @921 mA cm-2 | MIL-(IrNiFe)@NF [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 156 mV @500 mA cm-2 198 mV @1000 mA cm-2 179 mV @500 mA cm-2 235 mV @1000 mA cm-2 | ||
Ir@Ni-NDC [ | 1 mol L-1 KOH | 205 mV @500 mA cm-2 | RuFe-Ni2P@NF [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 227 mV @500 mA cm-2 262 mV @1000 mA cm-2 274 mV @500 mA cm-2 310 mV @1000 mA cm-2 | ||
Ni3Sn2-NiSnOx [ | 1 mol L-1 KOH | 111 mV @500 mA cm-2 165 mV @1000 mA cm-2 | MoNi@NF [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 219 mV @1000 mA cm-2 238 mV @1000 mA cm-2 | ||
Ag@Pt icosahedral NCs [ | 0.5 mol L-1 H2SO4 | 145 mV @1000 mA cm-2 232 mV @4000 mA cm-2 | Ru/P-NiMoO4@NF [ | 1 mol L-1 KOH seawater + 1 mol L-1 KOH | 232 mV @3000 mA cm-2 299 mV @3000 mA cm-2 | ||
Co-Ni3N/NF [ | 1 mol L-1 KOH | 123 mV @500 mA cm-2 125 mV @1000 mA cm-2 | Fe/F-Ni2P@NC [ | seawater + 1 mol L-1 KOH | 323 mV @1000 mA cm-2 | ||
U-MoNiS [ | 1 mol L-1 KOH | 305 mV @2243 mA cm-2 | CoxPv@NC [ | seawater + 1 mol L-1 KOH | 206 mV @500 mA cm-2 232 mV @1000 mA cm-2 | ||
Fe-CoNiP@NC [ | seawater + 1 mol L-1 KOH | 280 mV @1000 mA cm-2 |
Fig. 15. Design ideas for promising future HCD electrocatalysts. (a) Rare earth electrocatalysts; (b) Collaborative design of multiple strategies; (c) Lattice strain engineering; (d) Non metallic electronic bridge engineering.
|
[1] | 肖佳勇, 蒋超, 张辉, 邢卓, 邱明, 余颖. 具有亲水性的无定形棒状核壳结构NiMoP@CuNWs用于中性介质中高效析氢[J]. 催化学报, 2024, 63(8): 154-163. |
[2] | 黄子超, 杨婷惠, 张颖冰, 管超群, 桂文科, 况敏, 杨建平. 提高酸性CO2电解的选择性:阳离子效应和催化剂创新[J]. 催化学报, 2024, 63(8): 61-80. |
[3] | 任清汇, 徐亮, 吕梦雨, 张秩远, 栗振华, 邵明飞, 段雪. 电催化还原反应中的阳离子效应:最新进展[J]. 催化学报, 2024, 63(8): 16-32. |
[4] | 霍韵滢, 郭聪, 张永乐, 刘婧怡, 张巧, 刘芝婷, 杨光星, 李仁贵, 彭峰. 自支撑Ni(OH)2/NF催化剂高效电催化氧化5-羟甲基糠醛反应研究[J]. 催化学报, 2024, 63(8): 282-291. |
[5] | 梅子雯, 陈克军, 谭耀, 刘秋文, 陈琴, 王其忧, 汪喜庆, 蔡超, 刘康, 傅俊伟, 刘敏. 从富含缺陷的碳载体到酞菁钴的质子供给用于增强CO2电还原[J]. 催化学报, 2024, 62(7): 190-197. |
[6] | 杨树姣, 江鹏飞, 岳楷航, 郭凯, 杨璐娜, 韩金秀, 彭欣阳, 张学鹏, 郑浩铨, 杨韬, 曹睿, 严雅, 张伟. 多配位水分子的焦磷酸锰用于电催化水氧化研究[J]. 催化学报, 2024, 62(7): 166-177. |
[7] | 朱鸿睿, 徐慧民, 黄陈金, 张志杰, 詹麒尼, 帅婷玉, 李高仁. 光电催化析氧和CO2还原反应催化剂的研究进展[J]. 催化学报, 2024, 62(7): 53-107. |
[8] | 陈振霖, 薛静, 武磊, 党昆, 籍宏伟, 陈春城, 章宇超, 赵进才. 协同光电及热效应实现铜光阴极上等离激元催化高效硝酸根还原反应[J]. 催化学报, 2024, 62(7): 219-230. |
[9] | 刘青, 成雪峰, 霍锦艳, 刘小芳, 董慧龙, 曾宏波, 徐庆锋, 路建美. 调控N中间体与一维共轭配位聚合物的相互作用促进电催化硝酸盐还原产氨[J]. 催化学报, 2024, 62(7): 231-242. |
[10] | 陈晓, 杜云梅, 杨宇, 刘康, 赵晋灵, 夏晓丹, 王磊. 安培级电流密度下淬火优化CoPS纳米棒的晶型/非晶型比例以促进肼辅助的全水分解[J]. 催化学报, 2024, 62(7): 265-276. |
[11] | 赵万成, 马加朋, 田栋, 康宝涛, 夏方诠, 成婧, 吴亚军, 王梦遥, 武刚. 集成有CNTs和Ni-Ni(OH)2异质结构的电解析氢自支撑薄膜催化剂[J]. 催化学报, 2024, 62(7): 287-295. |
[12] | 赵贵, 路宽, 李玉楠, 卢发贵, 高朋, 南兵, 李丽娜, 张熠霄, 徐鹏涛, 刘晰, 陈立桅. 一种高效稳定的高熵合金电催化剂用于析氢反应[J]. 催化学报, 2024, 62(7): 156-165. |
[13] | 陈昕煜, 赵聪聪, 任静, 李波, 刘倩倩, 李葳, 杨帆, 陆思琦, 赵宇飞, 颜力楷, 臧宏瑛. 富含氧空位的由多金属氧簇辅助的银基异质结用于高效电催化固氮[J]. 催化学报, 2024, 62(7): 209-218. |
[14] | 侯现飚, 于辰, 倪腾嘉, 张树聪, 周健, 代水星, 初蕾, 黄明华. 构筑非晶/晶体NiFe-MOF@NiS异质结构催化剂增强大电流密度下水/海水氧化[J]. 催化学报, 2024, 61(6): 192-204. |
[15] | 王凯琪, 何益明. 金属钛酸盐基压电催化剂的最新进展: 改善压电性能和调节载流子输运以提高催化性能[J]. 催化学报, 2024, 61(6): 111-134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||