催化学报 ›› 2024, Vol. 63: 33-60.DOI: 10.1016/S1872-2067(24)60076-8

• 综述 • 上一篇    下一篇

用于高电流密度析氢反应电催化剂的研究进展

李志鹏a, 刘晓斌a,*(), 于青平a,b, 屈欣悦a, 万均a, 肖振宇a,*(), 迟京起a, 王磊a,b,*()   

  1. a青岛科技大学环境与安全工程学院国际科技合作基地, 生态化工工程重点实验室, 山东青岛 266042
    b青岛科技大学化学与分子工程学院, 山东青岛 266042
  • 收稿日期:2024-05-04 接受日期:2024-06-04 出版日期:2024-08-18 发布日期:2024-08-19
  • 通讯作者: *电子信箱: inorchemwl@qust.edu.cn (王磊),liuxb@qust.edu.cn (刘晓斌),inorgxiaozhenyu@163.com (肖振宇).
  • 基金资助:
    国家自然科学基金(51772162);国家自然科学基金(21971132);国家自然科学基金(52072197);山东省博士后创新项目(202102039);山东省优秀青年基金(ZR2019JQ14);山东省高校青年创新与技术基金(2019KJC004);重大科技创新项目(2019JZZY020405);山东省自然科学基金重大基础研究项目(ZR2020ZD09);111工程(D20017);泰山学者青年英才计划(tsqn201909114);山东省高校青年创新团队(202201010318);山东省“双百人才计划”(WST2020003)

Recent advances in design of hydrogen evolution reaction electrocatalysts at high current density: A review

Zhipeng Lia, Xiaobin Liua,*(), Qingping Yua,b, Xinyue Qua, Jun Wana, Zhenyu Xiaoa,*(), Jingqi Chia, Lei Wanga,b,*()   

  1. aKey Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
    bCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
  • Received:2024-05-04 Accepted:2024-06-04 Online:2024-08-18 Published:2024-08-19
  • Contact: *E-mail: inorchemwl@qust.edu.cn (L. Wang), liuxb@qust.edu.cn (X. Liu), inorgxiaozhenyu@163.com (Z. Xiao).
  • About author:Xiaobin Liu received his PhD from University of Science and Technology Beijing in 2020. He is currently an associate professor at Qingdao University of Science and Technology. His research interests focus on the synthesis of nanomaterials and their application in the field of electrochemical energy storage and conversion.
    Zhenyu Xiao was awarded a PhD in China University of Petroleum (East China) in 2017 under the supervision of Prof. Daofeng Sun. He is currently an associate professor at Qingdao University of Science and Technology. His research interests mainly focus on metal-organic frame materials, nanomaterials, supercapacitor, and electrocatalysis.
    Lei Wang earned his PhD in chemistry from Jilin University in 2006, supervised by professor Shouhua Feng. Subsequently, from 2008 to 2010, he pursued postdoctoral research at the State Key Laboratory of Crystal Materials, Shandong University. He is currently a professor of chemistry at Qingdao University of Science and Technology. His research interests mainly focus on the design and synthesis of functional organic-inorganic hybrids and porous MOFs materials, as well as their applications in photocatalysis, electrocatalysis, lithium-ion battery, etc.
  • Supported by:
    National Natural Science Foundation of China(51772162);National Natural Science Foundation of China(21971132);National Natural Science Foundation of China(52072197);Postdoctoral Innovation Project of Shandong Province(202102039);Outstanding Youth Foundation of Shandong Province, China(ZR2019JQ14);Youth Innovation and Technology Foundation of Shandong Higher Education Institutions, China(2019KJC004);Major Scientific and Technological Innovation Project(2019JZZY020405);Major Basic Research Program of Natural Science Foundation of Shandong Province(ZR2020ZD09);111 Project of China(D20017);Taishan Scholar Young Talent Program(tsqn201909114);University Youth Innovation Team of Shandong Province(202201010318);Shandong Province “Double-Hundred Talent Plan”(WST2020003)

摘要:

利用可再生能源将水电解生产“绿氢”是一种具有很大潜力的清洁能源生产技术, 被认为是实现碳中和以及未来能源系统转型的核心. 在过去的几十年里, 尽管研究人员报道了众多与商业Pt/C催化剂性能相当, 用于析氢反应(HER)的电催化剂, 但多数因测试电流密度较低, 无法满足实际工业生产的要求. 为了实现电解水制氢的工业化应用, 亟需开发可以在高电流密度(HCD≥500 mA cm-2)下高效运行的HER电催化剂. 然而, 合理设计此类电催化剂仍面临诸多挑战.

本综述梳理了HCD条件下HER电催化剂的研究进展和设计策略, 并对该领域的未来发展进行了展望. 针对HCD条件下HER电催化剂面临的挑战, 归纳总结了多种有效的设计策略. 电催化剂的形貌、尺寸等因素对催化活性位点的暴露数量影响较大, 尤其是在HCD条件下, 对电子转移和传质过程有更高的要求. 一些特殊的导电基底(如泡沫镍、泡沫铁、泡沫铜和碳布等)通常有较高的孔隙率, 可以暴露更多活性位点, 加速传质过程. 此外, 调控电催化剂的组分可以调整其电子结构, 从而优化反应中间体的吸附能, 提高催化活性. 此外, 还从电解质与电催化剂的相互作用、电催化剂的尺寸效应、微观结构和宏观结构、电子转移过程、表面性质等方面进一步总结分析了用于HCD的HER电催化剂设计策略. 总结了多种不同组分的HER电催化剂的优缺点和合成方法,并根据电催化剂组分的不同, 将其分类为合金、金属氧化物、金属氢氧化物、金属硫化物/硒化物、金属氮化物、金属磷化物及其他电催化剂, 概述了近几年HCD条件下获得优异HER催化性能的相关研究, 重点从机理角度分析了上述HCD电催化剂性能优异的原因. 最后, 针对用于HCD的HER电催化剂的未来发展进行了展望. 未来研究应聚焦于设计策略间的协同效应与相互作用, 以推动性能优化. 同时, 工业应用潜力作为关键评价指标, 应通过构建模拟工业环境的电解槽来深入评估, 以确保其在实际生产中的有效性.

综上, 本文对HCD条件下HER电催化剂的研究进展进行了系统归纳, 并展望了其未来发展方向. 深入探索各设计策略间的协同效应, 并准确评估其工业应用潜力, 是推动该技术发展的关键所在. 特别是, 通过构建模拟工业环境的电解槽来评估HCD电催化剂的实际应用潜力, 对于其工业化应用进程至关重要. 本文旨在为HCD条件下HER电催化剂的制备与研究提供有价值的参考与借鉴.

关键词: 电催化, 高电流密度, 析氢反应, 水电解

Abstract:

The electrolysis of water powered by renewable energy sources offers a promising method of "green hydrogen" production, which is considered to be at the heart of future carbon-neutral energy systems. In the past decades, researchers have reported a number of hydrogen evolution reaction (HER) electrocatalysts with activity comparable to that of commercial Pt/C, but most of them are tested within a small current density range, typically no more than 500 mA cm-2. To realize the industrial application of hydrogen production from water electrolysis, it is essential to develop high-efficiency HER electrocatalysts at high current density (HCD ≥ 500 mA cm-2). Nevertheless, it remains challenging and significant to rational design HCD electrocatalysts for HER. In this paper, the design strategy of HCD electrocatalysts is discussed, and some HCD electrocatalysts for HER are reviewed in seven categories (alloy, metal oxide, metal hydroxide, metal sulfide/selenide, metal nitride, metal phosphide and other derived electrocatalysts). At the end of this article, we also propose some viewpoints and prospects for the future development and research directions of HCD electrocatalysts for HER.

Key words: Electrocatalyst, High current density, Hydrogen evolution reaction, Water electrolysis