催化学报 ›› 2024, Vol. 63: 124-132.DOI: 10.1016/S1872-2067(24)60092-6

• 论文 • 上一篇    下一篇

负载铂的二氧化钛是否是可见光下染料敏化制氢的最佳材料?

Haruka Yamamotoa, Langqiu Xiaob, Yugo Misekic, Hiroto Uekia, Megumi Okazakia, Kazuhiro Sayamac, Thomas E. Malloukb,d,*(), Kazuhiko Maedaa,e,*()   

  1. a东京工业大学理学院化学系, 东京, 日本
    b宾夕法尼亚大学化学系, 费城, 美国
    c国家先进工业科学技术研究院, 全球零排放研究中心, 茨城, 日本
    d国家材料科学研究所, 国际材料纳米结构中心, 茨城, 日本
    e东京工业大学自主系统材料研究中心, 神奈川, 日本
  • 收稿日期:2024-04-08 接受日期:2024-06-12 出版日期:2024-08-18 发布日期:2024-08-19
  • 通讯作者: *电子信箱: mallouk@sas.upenn.edu (T. Mallouk),maedak@chem.titech.ac.jp (K. Maeda).

Is platinum-loaded titania the best material for dye-sensitized hydrogen evolution under visible light?

Haruka Yamamotoa, Langqiu Xiaob, Yugo Misekic, Hiroto Uekia, Megumi Okazakia, Kazuhiro Sayamac, Thomas E. Malloukb,d,*(), Kazuhiko Maedaa,e,*()   

  1. aDepartment of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
    bDepartment of Chemistry, University of Pennsylvania, 231 S. 34th Street Philadelphia, PA 19104, United States
    cGlobal Zero Emission Research Center (GZR), National Institute of Advanced Industrial Science and Technology (AIST), West, 16-1, Onogawa, Tsukuba, Ibaraki 305-8569, Japan
    dInternational Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
    eResearch Center for Autonomous Systems Materialogy (ASMat), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
  • Received:2024-04-08 Accepted:2024-06-12 Online:2024-08-18 Published:2024-08-19
  • Contact: *E-mail: mallouk@sas.upenn.edu (T. Mallouk), maedak@chem.titech.ac.jp (K. Maeda).

摘要:

将负载Pt的TiO2与Ru(II)三亚胺敏化剂(RuP)相结合, 构建了一种染料敏化光催化剂RuP/Pt/TiO2, 并探索其在光化学析氢反应中的应用. 通过对比实验, 评估了该催化剂与Pt插层HCa2Nb3O10纳米片催化剂RuP/Pt/HCa2Nb3O10在不同电子供体条件下的析氢活性. 当以乙二胺四乙酸(EDTA)二钠盐二水合物作为牺牲供体时, RuP/Pt/TiO2表现出比RuP/Pt/HCa2Nb3O10更高的催化活性, 这归因于Pt/TiO2复合材料在牺牲性还原剂EDTA存在下, 能够有效抑制反向电子传递, 从而提高了光生电子的利用效率. 然而, 当采用NaI作为电子供体时, 由于RuP/Pt/TiO2存在向I-氧化产生的电子受体I3-的反向电子传递, 导致其活性显著降低. 为了克服这一问题, 通过用阴离子聚合物(如聚甲基丙烯酸钠PMA或聚苯乙烯磺酸钠PSS)对RuP/Pt/TiO2进行改性, 这些聚合物能够有效抑制I3-对导带电子的捕获, 进而提升了在NaI水溶液中的产氢活性. 尽管如此, 改性后的RuP/Pt/TiO2材料在产氢活性上仍未超过未改性的RuP/Pt/HCa2Nb3O10. 瞬态吸收测量结果表明, 与HCa2Nb3O10相比, TiO2的反向电子转移速率较慢, 但电子向I3-的转移反应却快得多. 这一发现凸显了催化剂设计的复杂性及其对反应性能的重要影响. 在设计光催化剂时, 需要综合考虑半导体材料、染料敏化剂以及电子供体的相互作用, 以实现高效的电子转移和抑制不必要的反向电子传递. 综上可见, Pt/TiO2基染料敏化光催化剂在与牺牲还原剂(如EDTA)的反应中表现出色, 其中可以忽略更易还原产物的反向电子转移反应; 然而, 当使用可逆电子供体(如NaI)时, 则需要对催化剂进行针对性的设计, 以达到理想的反应活性. 此外, 通过优化染料敏化析氢体系中的助催化剂, 有望进一步提升正向电子传递效率, 从而显著增强复合材料整体的光催化性能. 本研究不仅深化了对光催化析氢机制的理解, 也为未来高效光催化剂的设计提供了有益的参考.

关键词: 人工光合成, 太阳能燃料, 水分解, Z-型

Abstract:

A dye-sensitized photocatalyst combining Pt-loaded TiO2 and Ru(II) tris-diimine sensitizer (RuP) was constructed and its activity for photochemical hydrogen evolution was compared with that of Pt-intercalated HCa2Nb3O10 nanosheets. When the sacrificial donor ethylenediaminetetraacetic acid (EDTA) disodium salt dihydrate was used, RuP/Pt/TiO2 showed higher activity than RuP/Pt/HCa2Nb3O10. In contrast, when NaI (a reversible electron donor) was used, RuP/Pt/TiO2 showed little activity due to back electron transfer to the electron acceptor (I3-), which was generated as the oxidation product of I-. By modification with anionic polymers (sodium poly(styrenesulfonate) or sodium polymethacrylate) that could inhibit the scavenging of conduction band electrons by I3-, the H2 production activity from aqueous NaI was improved, but it did not exceed that of RuP/Pt/HCa2Nb3O10. Transient absorption measurements showed that the rate of semiconductor-to-dye back electron transfer was slower in the case of TiO2 than HCa2Nb3O10, but the electron transfer reaction to I3- was much faster. These results indicate that Pt/TiO2 is useful for reactions with sacrificial reductants (e.g., EDTA), where the back electron transfer reaction to the more reducible product can be neglected. However, more careful design of the catalyst will be necessary when a reversible electron donor is employed.

Key words: Artificial photosynthesis, Solar fuel, Water splitting, Z-scheme