催化学报 ›› 2024, Vol. 63: 1-15.DOI: 10.1016/S1872-2067(24)60090-2
• 综述 • 下一篇
沈辰阳a,b, 刘梦辉a, 何松c, 赵海波c,*(), 刘昌俊a,*()
收稿日期:
2024-05-06
接受日期:
2024-06-22
出版日期:
2024-08-18
发布日期:
2024-08-19
通讯作者:
*电子信箱: cjL@tju.edu.cn (刘昌俊),hzhao@mail.hust.edu.cn (赵海波).
基金资助:
Chenyang Shena,b, Menghui Liua, Song Hec, Haibo Zhaoc,*(), Chang-jun Liua,*()
Received:
2024-05-06
Accepted:
2024-06-22
Online:
2024-08-18
Published:
2024-08-19
Contact:
*E-mail: cjL@tju.edu.cn (C.-J. Liu), About author:
Haibo Zhao is a professor in the School of Energy and Power Engineering at Huazhong University of Science and Technology. Prof. Haibo Zhao is also a Fellow of the Combustion Institute. His research interests include the low-carbon combustion and high-value utilization of fossil fuels, as well as the flame synthesis of functional nanoparticles. He has been supported by the National Science Fund for Distinguished Young Scholars of China, Alexander von Humboldt Foundation, etc. His research work won the Distinguished Paper Award in the 38th International Symposium on Combustion, and the Best Paper Award in the 3rd International Conference on Chemical Looping, etc. He served as an editorial board member or associate editor of Energy & Fuels, Engineering, and Energy Environmental Focus.Supported by:
摘要:
CO2甲烷化反应在大规模CO2利用、可再生能源存储等方面有很好的应用前景. 研究开发高活性、高稳定性的CO2甲烷化催化剂已成为研究热点. 负载型钌基催化剂对CO2甲烷化反应具有高活性和高稳定性, 因此被广泛关注. 此类催化剂在甲烷化反应过程中表现出结构敏感性, 其中钌催化剂的尺寸与结构、催化剂载体、钌催化剂与载体之间的强相互作用等, 均对催化剂催化活性和反应机理影响较大. 目前, 负载型钌基催化剂的结构可控制备是目前面临的主要挑战.
本文总结了近年来负载型钌基催化剂在CO2甲烷化反应领域的研究进展, 并对后续研究发展作了展望. 首先, 对CO2甲烷化做了热力学分析, 说明低温、高压和高氢/碳比有利于甲烷的生成, 但催化剂在低温下的加氢活性存在一定局限. 然后, 从催化剂尺寸效应、载体影响以及金属-载体相互作用等方面, 对CO2甲烷化负载型钌基催化剂研究进展进行了分析讨论. 归纳总结了钌催化剂尺寸效应, 说明单原子钌催化剂对CO2分子的解离能力不足, 负载型单原子钌催化剂更倾向于发生逆水煤气变换反应而生成CO. 相比之下, 较大尺寸的钌催化剂更利于CO2甲烷化反应. 此外, 还讨论了负载型钌基催化剂的载体特性对于甲烷化活性和选择性的影响, 包括载体的还原性、表面羟基覆盖度等, 也归纳了近年来在非氧化物载体应用等方面的研究进展. 论文进一步重点讨论了负载型钌基催化剂中的金属-载体强相互作用对催化剂活性的影响.
尽管近年来在负载型钌基CO2甲烷化催化剂的制备和表征等方面取得了一些进展, 但在催化剂低温活性改进、催化剂结构可控制备以及催化反应机理研究等方面仍然存在不足. 因此, 后续亟需结合先进的催化剂表征手段和理论计算研究方法, 有针对性地开展多学科交叉研究. 综上, 本文对今后CO2甲烷化负载型钌基催化剂研究有参考意义.
沈辰阳, 刘梦辉, 何松, 赵海波, 刘昌俊. 二氧化碳甲烷化负载型钌基催化剂的研究进展[J]. 催化学报, 2024, 63: 1-15.
Chenyang Shen, Menghui Liu, Song He, Haibo Zhao, Chang-jun Liu. Advances in the studies of the supported ruthenium catalysts for CO2 methanation[J]. Chinese Journal of Catalysis, 2024, 63: 1-15.
Fig. 2. Thermodynamic analyses of CO2 methanation. (a) equilibrium CO2 conversion, CH4 and CO selectivity at 1 bar and 1/4 of CO2/H2; (b) the effect of the pressure on equilibrium CO2 conversion; (c) the effect of the pressure on CH4 selectivity; (d) the effect of CO2/H2 ratio on equilibrium CO2 conversion; (e) the effect of CO2/H2 ratio on CH4 selectivity. All thermodynamic analyses were conducted using the HSC Chemistry 9 software.
Fig. 3. (a-d) HAADF-STEM images and elemental mappings of Ru(SA)/CeO2 and Ru(NC)/CeO2. (e,f) HAADF-STEM and HR-TEM images of Ru(NP)/CeO2. Reprinted with permission from Ref. [54]. Copyright 2018, American Chemical Society. (g) Apparent activation energy as a function of ruthenium particle size for Ru/γ-Al2O3 catalysts. Reprinted with permission from Ref. [56]. Copyright 2019, Elsevier. (h) Configurations of CO2* and CO related species of Ru1/CeO2 and Ru4/CeO2 model catalysts. Reprinted with permission from Ref. [55]. Copyright 2021, American Chemical Society.
Intermediate | Ru1/Ru(0001) | Ru2/Ru(0001) | Ru3/Ru(0001) | Ru4/Ru(0001) |
---|---|---|---|---|
CO2* | -0.45 | -1.02 | -1.26 | -0.97 |
CO* | -1.67 | -2.07 | -2.03 | -1.95 |
O* | -5.51 | -6.36 | -6.39 | -6.03 |
H* | -2.62 | -2.87 | -2.87 | -2.79 |
CH4* | -0.31 | -0.23 | -0.14 | -0.10 |
CH3OH* | -0.96 | -0.82 | -0.79 | -0.54 |
H2O* | -0.87 | -0.73 | -0.59 | -0.81 |
CO2* configuration | | | | |
CO* + O* configuration | | | | |
Table 1 The adsorption energies (eV) of intermediates with configurations of CO2* and CO*+O* on Run/Ru(0001). Reprinted with permission from Ref. [46]. Copyright 2022, Elsevier.
Intermediate | Ru1/Ru(0001) | Ru2/Ru(0001) | Ru3/Ru(0001) | Ru4/Ru(0001) |
---|---|---|---|---|
CO2* | -0.45 | -1.02 | -1.26 | -0.97 |
CO* | -1.67 | -2.07 | -2.03 | -1.95 |
O* | -5.51 | -6.36 | -6.39 | -6.03 |
H* | -2.62 | -2.87 | -2.87 | -2.79 |
CH4* | -0.31 | -0.23 | -0.14 | -0.10 |
CH3OH* | -0.96 | -0.82 | -0.79 | -0.54 |
H2O* | -0.87 | -0.73 | -0.59 | -0.81 |
CO2* configuration | | | | |
CO* + O* configuration | | | | |
Fig. 5. Schematic illustration of the generation process for oxygen vacancy, Ce3+, and surface hydroxyl in Ru/CeO2 catalyst in the reduction process. Reprinted with permission from Ref. [59]. Copyright 2016, American Chemical Society.
Fig. 6. (a) Overview of the promoted formate pathway via hydroxyl groups. (b) Comparison on the formation of HCOO* species with and without surface OH* on Ru/CeO2. Reprinted with permission from Ref. [77]. Copyright 2021, American Chemical Society. (c) Schematic representation of the generation of hydroxyl groups and carbonate species in CO2 activation during the methanation process. Reprinted with permission from Ref. [79]. Copyright 2016, American Chemical Society.
Fig. 7. CO2 conversion and selectivity of the supported Ru catalysts for CO2 hydrogenation. (a) Ru/a-TiO2; (b) a-TiO2; (c) Ru/CeO2; (d) Ru/SiO2; (e) Ru/r-TiO2, (f) Ru/MoO3. Reaction conditions: 1.0 MPa, CO2/H2/Ar = 24/73/3, 3000 mL gcat-1 h-1. Reprinted with permission from Ref. [76]. Copyright 2024, American Chemical Society.
Catalyst | H2/CO2 (v/v%) | T (°C) | CO2 conversion (%) | CH4 selectivity (%) | TOF (h-1) | Ref. |
---|---|---|---|---|---|---|
Ru/TiO2 | 4/1 | 150 | 0 | 0 | 0 | [ |
Ru/TiO2 | 4/1 | 200 | 15 | 68 | 290 | [ |
Ru/TiO2 | 4/1 | 250 | 40 | 78 | 770 | [ |
Ru/TiO2 | 4/1 | 300 | 70 | 85 | 1350 | [ |
RuO2/TiO2 | 4/1 | 200 | 0 | 0 | 0 | [ |
RuO2/TiO2 | 4/1 | 250 | 25 | 75 | 450 | [ |
RuO2/TiO2 | 4/1 | 300 | 50 | 85 | 900 | [ |
Ru/TiO2 | 4/1 | 200 | 37 | >99 | 216 | [ |
Ru/γ-Al2O3 | 4/1 | 280 | <1 | >99 | 4720 | [ |
Ru/Ce0.9Cr0.1O2 | 4/1 | 225 | 5 | >99 | 223.9 | [ |
Ru/Ce0.9Cr0.1O2 | 4/1 | 250 | 70 | >99 | 540 | [ |
Ru/TiO2 | 3/1 | 200 | 1 | >99 | 15 | [ |
Ru/TiO2 | 3/1 | 250 | 3 | >99 | 45 | [ |
Ru/TiO2 | 3/1 | 300 | 8-21 | >99 | 119-298 | [ |
Ru/MnOx | 4/1 | 300 | 25 | 90 | 180 | [ |
Ru/Al2O3 | 4/1 | 300 | 32 | 94 | 1296 | [ |
Ru/CeO2 | 4/1 | 300 | 83 | 99 | 540 | [ |
Ru/ZnO | 4/1 | 300 | 1 | 6 | 14.4 | [ |
Ru/CeO2 | 4/1 | 450 | 55 | 99 | - | [ |
Ru/CeO2 | 4/1 | 150 | <10 | 99 | 2.2 ± 0.1 | [ |
Ru/CeO2 | 4/1 | 200 | 35 | >99 | - | [ |
Ru/CeO2 | 4/1 | 250 | 92.7 | >99 | - | [ |
Ru/CeO2 | 4/1 | 300 | 93 | - | - | [ |
Ru/α-Al2O3 | 4/1 | 200 | 0 | - | - | [ |
Ru/α-Al2O3 | 4/1 | 250 | 5 | >99 | 2.5 ± 0.2 | [ |
Ru/α-Al2O3 | 4/1 | 300 | 55 | - | - | [ |
Ru/TiO2 | 80.9/15.5 | 350 | 60 | >99 | 83 | [ |
0Al-Ru/SiC | 4/1 | 300 | 19.1 | - | 756 | [ |
10Al-Ru/SiC | 4/1 | 300 | 17.8 | - | 1188 | [ |
30Al-Ru/SiC | 4/1 | 300 | 17 | - | 1368 | [ |
70Al-Ru/SiC | 4/1 | 300 | 16 | - | 1584 | [ |
Ru@MIL-101 | 4/1 | 200 | 19 | - | 358 ± 46 | [ |
Ru@MIL-101@Silica nanofibrous veil + brushing treatment | 4/1 | 200 | 3.2 | - | 404 ± 6 | [ |
4/1 | 225 | 16 | - | 2064 ± 29 | [ | |
4/1 | 250 | 26 | - | 3257 ± 19 | [ | |
4/1 | 300 | 40 | - | 5134 ± 59 | [ |
Table 2 Overview of Ru-based CO2 methanation catalysts reported in literature.
Catalyst | H2/CO2 (v/v%) | T (°C) | CO2 conversion (%) | CH4 selectivity (%) | TOF (h-1) | Ref. |
---|---|---|---|---|---|---|
Ru/TiO2 | 4/1 | 150 | 0 | 0 | 0 | [ |
Ru/TiO2 | 4/1 | 200 | 15 | 68 | 290 | [ |
Ru/TiO2 | 4/1 | 250 | 40 | 78 | 770 | [ |
Ru/TiO2 | 4/1 | 300 | 70 | 85 | 1350 | [ |
RuO2/TiO2 | 4/1 | 200 | 0 | 0 | 0 | [ |
RuO2/TiO2 | 4/1 | 250 | 25 | 75 | 450 | [ |
RuO2/TiO2 | 4/1 | 300 | 50 | 85 | 900 | [ |
Ru/TiO2 | 4/1 | 200 | 37 | >99 | 216 | [ |
Ru/γ-Al2O3 | 4/1 | 280 | <1 | >99 | 4720 | [ |
Ru/Ce0.9Cr0.1O2 | 4/1 | 225 | 5 | >99 | 223.9 | [ |
Ru/Ce0.9Cr0.1O2 | 4/1 | 250 | 70 | >99 | 540 | [ |
Ru/TiO2 | 3/1 | 200 | 1 | >99 | 15 | [ |
Ru/TiO2 | 3/1 | 250 | 3 | >99 | 45 | [ |
Ru/TiO2 | 3/1 | 300 | 8-21 | >99 | 119-298 | [ |
Ru/MnOx | 4/1 | 300 | 25 | 90 | 180 | [ |
Ru/Al2O3 | 4/1 | 300 | 32 | 94 | 1296 | [ |
Ru/CeO2 | 4/1 | 300 | 83 | 99 | 540 | [ |
Ru/ZnO | 4/1 | 300 | 1 | 6 | 14.4 | [ |
Ru/CeO2 | 4/1 | 450 | 55 | 99 | - | [ |
Ru/CeO2 | 4/1 | 150 | <10 | 99 | 2.2 ± 0.1 | [ |
Ru/CeO2 | 4/1 | 200 | 35 | >99 | - | [ |
Ru/CeO2 | 4/1 | 250 | 92.7 | >99 | - | [ |
Ru/CeO2 | 4/1 | 300 | 93 | - | - | [ |
Ru/α-Al2O3 | 4/1 | 200 | 0 | - | - | [ |
Ru/α-Al2O3 | 4/1 | 250 | 5 | >99 | 2.5 ± 0.2 | [ |
Ru/α-Al2O3 | 4/1 | 300 | 55 | - | - | [ |
Ru/TiO2 | 80.9/15.5 | 350 | 60 | >99 | 83 | [ |
0Al-Ru/SiC | 4/1 | 300 | 19.1 | - | 756 | [ |
10Al-Ru/SiC | 4/1 | 300 | 17.8 | - | 1188 | [ |
30Al-Ru/SiC | 4/1 | 300 | 17 | - | 1368 | [ |
70Al-Ru/SiC | 4/1 | 300 | 16 | - | 1584 | [ |
Ru@MIL-101 | 4/1 | 200 | 19 | - | 358 ± 46 | [ |
Ru@MIL-101@Silica nanofibrous veil + brushing treatment | 4/1 | 200 | 3.2 | - | 404 ± 6 | [ |
4/1 | 225 | 16 | - | 2064 ± 29 | [ | |
4/1 | 250 | 26 | - | 3257 ± 19 | [ | |
4/1 | 300 | 40 | - | 5134 ± 59 | [ |
|
[1] | 黄子超, 杨婷惠, 张颖冰, 管超群, 桂文科, 况敏, 杨建平. 提高酸性CO2电解的选择性:阳离子效应和催化剂创新[J]. 催化学报, 2024, 63(8): 61-80. |
[2] | 王金龙, 刘东妮, 李铭洋, 谷骁一, 吴仕群, 张金龙. 通过金属空位工程促进CO2光还原[J]. 催化学报, 2024, 63(8): 202-212. |
[3] | 严靖, 倪嘉琪, 孙宏丽, 苏陈良, 刘彬. 原位衰减全反射表面增强红外光谱示踪单原子催化二氧化碳电还原反应中间体的研究进展[J]. 催化学报, 2024, 62(7): 32-52. |
[4] | 梅子雯, 陈克军, 谭耀, 刘秋文, 陈琴, 王其忧, 汪喜庆, 蔡超, 刘康, 傅俊伟, 刘敏. 从富含缺陷的碳载体到酞菁钴的质子供给用于增强CO2电还原[J]. 催化学报, 2024, 62(7): 190-197. |
[5] | 任小敏, 戴慧聪, 刘鑫, 杨启华. 多位点隔离的金属催化剂用于高效选择性加氢[J]. 催化学报, 2024, 62(7): 108-123. |
[6] | 朱鸿睿, 徐慧民, 黄陈金, 张志杰, 詹麒尼, 帅婷玉, 李高仁. 光电催化析氧和CO2还原反应催化剂的研究进展[J]. 催化学报, 2024, 62(7): 53-107. |
[7] | 刘露杰, 刘奔, 中川善直, 刘斯宝, 王亮, 藪下瑞帆, 冨重圭一. 生物质和塑料加氢脱氧制备燃料和化学品的双金属催化剂研究进展[J]. 催化学报, 2024, 62(7): 1-31. |
[8] | 邓欣, 郑彩艳, 李玮杰, 王佳敏, 杨迪, 胡振芃, 李兰冬. 金属镍活性中心在惰性金属载体中的自分散及其催化炔烃选择加氢性能[J]. 催化学报, 2024, 61(6): 259-268. |
[9] | 杨冲亚, 王玮珏, 卓红英, 沈铮, 张天雨, 杨小峰, 黄延强. 晶相设计钌基纳米催化剂提高CO2甲烷化活性[J]. 催化学报, 2024, 61(6): 226-236. |
[10] | 苟王燕, 王译晨, 张铭凯, 谈晓荷, 马媛媛, 瞿永泉. 设计稳定的钌基析氢和析氧反应催化剂的基本原理[J]. 催化学报, 2024, 60(5): 68-106. |
[11] | 陈智冰, 陈鑫泰, 吕雅丽, 牟效玲, 范佳辉, 李经伟, 严丽, 林荣和, 丁云杰. 用于丁二烯选择性加氢Ni3ZnC0.7@Ni@C催化剂的设计[J]. 催化学报, 2024, 60(5): 304-315. |
[12] | 陈欢, 虞周楠, 杨冰, 张亚峰, 车春霞, 刘晓艳, 张峰, 韩伟, 温翯, 王爱琴, 张涛. 乙炔选择加氢反应中碳化钯的动态精细调控: 气氛和氧化锌助剂的作用[J]. 催化学报, 2024, 60(5): 190-200. |
[13] | 黄浩铭, 林清清, 牛青, 宁江淇, 李留义, 毕进红, 于岩. 基于共价有机框架非金属位点的光催化CO2还原[J]. 催化学报, 2024, 60(5): 201-208. |
[14] | 王超琛, 葛旺鑫, 唐雷, 齐宴宾, 董磊, 江宏亮, 沈建华, 朱以华, 李春忠. 单原子修饰原子簇的多配位Cu基催化剂上CO2高选择性电还原CO的研究[J]. 催化学报, 2024, 59(4): 324-333. |
[15] | 谢逸, 徐湛友, 卢千, 王莹. 构建高效稳定的低温反向偏置双极膜电解槽用于二氧化碳还原[J]. 催化学报, 2024, 59(4): 82-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||