催化学报 ›› 2024, Vol. 63: 1-15.DOI: 10.1016/S1872-2067(24)60090-2

• 综述 •    下一篇

二氧化碳甲烷化负载型钌基催化剂的研究进展

沈辰阳a,b, 刘梦辉a, 何松c, 赵海波c,*(), 刘昌俊a,*()   

  1. a天津大学化工学院, 天津化学化工协同创新中心, 天津 300350
    b南京大学化学化工学院, 介观化学教育部重点实验室, 江苏南京 210023
    c华中科技大学能源与动力工程学院, 煤燃烧国家重点实验室, 湖北武汉 430074
  • 收稿日期:2024-05-06 接受日期:2024-06-22 出版日期:2024-08-18 发布日期:2024-08-19
  • 通讯作者: *电子信箱: cjL@tju.edu.cn (刘昌俊),hzhao@mail.hust.edu.cn (赵海波).
  • 基金资助:
    国家重点研发项目(2022YFA1504801);国家自然科学基金(22138009);中央高校基础研究经费

Advances in the studies of the supported ruthenium catalysts for CO2 methanation

Chenyang Shena,b, Menghui Liua, Song Hec, Haibo Zhaoc,*(), Chang-jun Liua,*()   

  1. aCollaborative Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
    bKey Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
    cState Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
  • Received:2024-05-06 Accepted:2024-06-22 Online:2024-08-18 Published:2024-08-19
  • Contact: *E-mail: cjL@tju.edu.cn (C.-J. Liu), hzhao@mail.hust.edu.cn (H. Zhao).
  • About author:Haibo Zhao is a professor in the School of Energy and Power Engineering at Huazhong University of Science and Technology. Prof. Haibo Zhao is also a Fellow of the Combustion Institute. His research interests include the low-carbon combustion and high-value utilization of fossil fuels, as well as the flame synthesis of functional nanoparticles. He has been supported by the National Science Fund for Distinguished Young Scholars of China, Alexander von Humboldt Foundation, etc. His research work won the Distinguished Paper Award in the 38th International Symposium on Combustion, and the Best Paper Award in the 3rd International Conference on Chemical Looping, etc. He served as an editorial board member or associate editor of Energy & Fuels, Engineering, and Energy Environmental Focus.
    Chang-jun Liu is a professor in the School of Chemical Engineering and Technology at Tianjin University, a Chang Jiang Distinguished Professor and Fellow of the Royal Society of Chemistry. His research interests include CO2 utilization, natural gas conversion, plasma nanoscience, and 3D printing. He has been in the list of highly cited Chinese authors (Chemical Engineering) by Elsevier since 2014. He served as the 2010 Program Chair of Fuel Chemistry Division of American Chemical Society and Chair of the 10th International Conference on CO2 Utilization. He is in the editorial board of Applied Catalysis B and Chinese Journal of Catalysis. He is in the advisory board of Journal of Energy Chemistry, Greenhouse Gases: Science & Technology, Journal of CO2 Utilization.
  • Supported by:
    National Key Research and Development Program of China(2022YFA1504801);National Natural Science Foundation of China(22138009);Fundamental Research Funds for the Central Universities of China

摘要:

CO2甲烷化反应在大规模CO2利用、可再生能源存储等方面有很好的应用前景. 研究开发高活性、高稳定性的CO2甲烷化催化剂已成为研究热点. 负载型钌基催化剂对CO2甲烷化反应具有高活性和高稳定性, 因此被广泛关注. 此类催化剂在甲烷化反应过程中表现出结构敏感性, 其中钌催化剂的尺寸与结构、催化剂载体、钌催化剂与载体之间的强相互作用等, 均对催化剂催化活性和反应机理影响较大. 目前, 负载型钌基催化剂的结构可控制备是目前面临的主要挑战.

本文总结了近年来负载型钌基催化剂在CO2甲烷化反应领域的研究进展, 并对后续研究发展作了展望. 首先, 对CO2甲烷化做了热力学分析, 说明低温、高压和高氢/碳比有利于甲烷的生成, 但催化剂在低温下的加氢活性存在一定局限. 然后, 从催化剂尺寸效应、载体影响以及金属-载体相互作用等方面, 对CO2甲烷化负载型钌基催化剂研究进展进行了分析讨论. 归纳总结了钌催化剂尺寸效应, 说明单原子钌催化剂对CO2分子的解离能力不足, 负载型单原子钌催化剂更倾向于发生逆水煤气变换反应而生成CO. 相比之下, 较大尺寸的钌催化剂更利于CO2甲烷化反应. 此外, 还讨论了负载型钌基催化剂的载体特性对于甲烷化活性和选择性的影响, 包括载体的还原性、表面羟基覆盖度等, 也归纳了近年来在非氧化物载体应用等方面的研究进展. 论文进一步重点讨论了负载型钌基催化剂中的金属-载体强相互作用对催化剂活性的影响.

尽管近年来在负载型钌基CO2甲烷化催化剂的制备和表征等方面取得了一些进展, 但在催化剂低温活性改进、催化剂结构可控制备以及催化反应机理研究等方面仍然存在不足. 因此, 后续亟需结合先进的催化剂表征手段和理论计算研究方法, 有针对性地开展多学科交叉研究. 综上, 本文对今后CO2甲烷化负载型钌基催化剂研究有参考意义.

关键词: 钌, 二氧化碳, 甲烷化, 加氢, 金属-载体强相互作用

Abstract:

CO2 methanation has a potential in the large-scale utilization of carbon dioxide. It has also been considered to be useful for the renewable energy storage. The commercial pipeline for natural gas transportation can be directly applied for the methane product of CO2 methanation. The supported ruthenium (Ru) catalyst has been confirmed to be active and stable for CO2 methanation with its high ability in the dissociation of hydrogen and the strong binding of carbon monoxide. CO2 methanation over the supported Ru catalyst is structure sensitive. The size of the Ru catalyst and the support have significant effects on the activity and the mechanism. A significant challenge remained is the structural controllable preparation of the supported Ru catalyst toward a sufficiently high low-temperature activity. In this review, the recent progresses in the investigations of the supported Ru catalysts for CO2 methanation are summarized. The challenges and the future developments are also discussed.

Key words: Ruthenium, Carbon dioxide, Methanation, Hydrogenation, Catalyst and metal-support interaction