催化学报 ›› 2024, Vol. 63: 81-108.DOI: 10.1016/S1872-2067(24)60072-0
陈春光a,1, 张金锋b,1, 褚海亮a,*(), 孙立贤a,*(), Graham Dawsonc, 代凯b,c,*()
收稿日期:
2024-04-07
接受日期:
2024-05-28
出版日期:
2024-08-18
发布日期:
2024-08-19
通讯作者:
*电子信箱: daikai940@chnu.edu.cn (代凯),sunlx@guet.edu.cn (孙立贤),chuhailiang@guet.edu.cn (褚海亮).
作者简介:
1共同第一作者.
基金资助:
Chunguang Chena,1, Jinfeng Zhangb,1, Hailiang Chua,*(), Lixian Suna,*(), Graham Dawsonc, Kai Daib,c,*()
Received:
2024-04-07
Accepted:
2024-05-28
Online:
2024-08-18
Published:
2024-08-19
Contact:
*E-mail: daikai940@chnu.edu.cn (K. Dai), sunlx@guet.edu.cn (L. Sun), chuhailiang@guet.edu.cn (H. Chu).
About author:
Hailiang Chu (School of Materials Science and Engineering, Guilin University of Electronic Technology) received his Ph.D. degree from Dalian Institute of Chemical Physics, Chinese Academy of Sciences in 2008. His research interests focus on the synthesis and application of high-performance electrode materials for secondary batteries and supercapacitors and high-capacity hydrogen storage materials, including alloys, metal borohydrides, metal-N-H materials, ammonia borane, and their derivatives.1 Contributed equally to this work.
Supported by:
摘要:
硫族化物因具有较宽的光吸收范围和较好的光还原能力, 在光催化领域备受关注. 目前已经开发的硫族化物光催化剂种类较多, 但是单组分光催化剂始终面对着一个难以解决的矛盾--难以同时满足宽的光吸收范围和强的氧化还原能力. 构建半导体异质结成为解决上述矛盾的有效办法. 近年来, S型异质结因其独特的光催化机理为研发新型高效光催化剂提供了重要途径. 因此, 通过合理的选择硫族化物与其他半导体构建S型异质结光催化剂, 可以充分发挥硫族化物和S型异质结的优势, 改善载流子快速复合情况, 提高光能转换效率, 从而展现出硫族化物基S型异质结光催化剂在光催化领域的巨大发展潜力.
本文综述了硫族化物基S型异质结光催化剂的作用机理、合成方法、在光催化领域的应用以及对应的先进表征技术. 首先, 系统总结了光催化的基本原理, 并介绍了异质结光催化剂的工作机制, 重点阐述了S型异质结的能带结构及其对硫族化物基S型异质结光催化剂光催化活性和稳定性的提升机制. 其次, 概述了几种常见的制备硫族化物基S型异质结光催化剂的方法, 并讨论了每种方法的各自特点, 为设计异质结光催化剂提供了思路. 此外, 深入探讨了硫族化物基S型异质结光催化剂在光催化领域的应用, 表明其在能源储备和环境保护等方面的发展潜力和优势. 同时, 本文还讨论了用于验证S型异质结机理的一系列稳态和瞬态的先进表征和模拟技术, 包括原位表征技术和密度泛函理论等. 最后, 提出了硫族化物基S型异质结光催化剂面临的问题和挑战以及相对应的建议, 并且对其在光催化领域的发展趋势进行了展望.
综上, 本文详细综述了硫族化物基S型异质结光催化剂的研究进展, 为硫族化物基S型异质结光催化剂在光催化领域的进一步应用提供参考.
陈春光, 张金锋, 褚海亮, 孙立贤, Graham Dawson, 代凯. 硫族化物基S型异质结光催化剂[J]. 催化学报, 2024, 63: 81-108.
Chunguang Chen, Jinfeng Zhang, Hailiang Chu, Lixian Sun, Graham Dawson, Kai Dai. Chalcogenide-based S-scheme heterojunction photocatalysts[J]. Chinese Journal of Catalysis, 2024, 63: 81-108.
Fig. 3. Band structure and charge transfer direction of type-II heterojunction (a), conventional Z-scheme heterojunction (b), all-solid Z-scheme heterojunction (c), and direct Z-scheme heterojunction (d).
Fig. 5. (a) Fabrication process of Ti3C2-ZnIn2S4-NiSe2 composites. (b) Schematic of interfacial electron transfer, Ef equilibrium, and migration of photogenerated carriers in MX-modified ZIS-NiSe2 S-scheme heterojunction under illumination [43]. Copyright 2022, Elsevier.
Fig. 6. (a) SEM images of ZZS-20 nanofibers. (b) TEM images of ZZS-20. (c) HRTEM images of ZZS-20. (d) Photocatalytic H2O2 evolution performance of different photocatalysts. (e) Stability cycle test of H2O2 production by ZZS-20. (f) XRD pattern before and after four cycles of ZZS-20 [47]. Copyright 2023, Elsevier.
Fig. 7. (a) The preparation process of core-shell MC nanocomposite. (b) SEM image and EDS result of MC-10. (c) TEM image of MC-10. (d) H2-evolution rates of all synthesized samples. (e) Stability test of H2 generation by MC-10 [49]. Copyright 2021, Springer Nature.
Fig. 8. TEM images of 10MCS (a) and 15MCS (b) samples. The location of the MoS2 nanosheets is shown in the inset images, highlighted in blue. (c) Time-based H2 evolution curves for different samples. (d) Cyclic photocatalytic H2 evolution performance of the 2.5MCS sample under visible-light illumination. (e) Schematic of the charge transfer and recombination processes in the MoS2-tipped CdS NRs and MoS2-coated CdS NRs for photocatalytic H2 evolution [50]. Copyright 2020, Elsevier.
Fig. 9. (a) Schematic of the experimental process for TiO2/CdS well-distributed hybrid nanofibers. FESEM images of TiO2 (b), CdS (c), and TC10 (d). (e) HRTEM image of TC10 [57]. Copyright 2019. John Wiley and Sons.
Fig. 11. SEM images of ZnWO4-ZnIn2S4-40 at low (a) and high (b) magnification. Amount (c) and rate (d) of H2 evolution for different samples. (e,f) Cyclic stability of H2 evolution activity over ZnWO4-ZnIn2S4-40 [14]. Copyright 2022, Elsevier.
Fig. 12. (a) H2 production rates of samples. (b) H2 production stability test of 20 wt% Co9S8/TiO2. XPS spectra of Ti 2p (c), O 1s (d), Co 2p (e), and S 2p (f) [83]. Copyright 2022, Elsevier.
Fig. 14. (a) Schematic of the preparation process of the MoO3-x@ZnIn2S4 composites. (b) CH4 production and (c) CO production as a function of the irradiation time under full-spectrum illumination over different samples. (d) Product yields, CH4 selectivity, and surface temperature of different samples under full-spectrum illumination. (e) Product yields and CH4 selectivity of the samples under different temperatures [97]. Copyright 2023, Royal Society of Chemistry.
Fig. 15. UV-DRS (a) and TPRL (b) spectra of different samples. (c) Photocatalytic performance of H2 evolution and benzyl alcohol oxidation for different samples. (d) EPR spectra of DMPO-?O2? for different samples under visible light irradiation. (e) Schematic depicting simultaneous photocatalytic H2 evolution and aromatic alcohol oxidation at CMZIS heterojunctions [100]. Copyright 2023, Elsevier.
Fig. 17. (a) H2O2 evolution rates of different samples in pure water system under visible-light irradiation. (b) Time curves of H2O2 evolution of different samples [114]. Copyright 2023, Elsevier.
Fig. 18. N2 adsorption-desorption isotherms (a) and UV-visible light absorption spectra (b) of different samples. (c) Photocatalytic ammonia production under different conditions, (d) the N2 fixation rate of different samples [122]. Copyright 2023, Elsevier.
Fig. 19. (a) Synergistic adsorption and photo-Fenton mechanisms of PLS-MBB composite sponge in the removal of fluoroquinolones. (b) Trapping experiment of active species during the photo-Fenton degradation of norfloxacin by PLS-MBB. (c) PL spectra of hydroxybenzoic acid are generated in different systems [132]. Copyright 2022, Elsevier.
Fig. 20. Antibacterial efficiency of the sample against Escherichia coli (a) and Staphylococcus aureus (b). Growth rate constants of Escherichia coli (c) and Staphylococcus aureus (d) at different concentrations of F101@MoS2/ZnO [143]. Copyright 2022, American Chemical Society.
Photocatalyst | Mechanism | Synthesis method | Light source | Application | Photocatalytic efficacy | Ref. |
---|---|---|---|---|---|---|
CdS/pyrene-alt-triphenylamine | S-scheme | in situ growth | 350 W Xenon arc lamp with 420 nm cut off filter | H2 evolution | 9.28 mmol h-1 g-1 | [ |
Co9S8/ZnSe | S-scheme | hydrothermal and solvothermal methods | 300W Xe lamp (λ ≥ 420 nm) | H2 evolution | 967.8 μmol g-1 h-1 | [ |
ZnWO4-ZnIn2S4 | S-scheme | low-temperature solvothermal method | 300 W Xenon arc lamp (λ ≥ 420 nm) | H2 evolution | 4925.3 μmol g-1 h-1 | [ |
MoO3-x@ZnIn2S4 | S-scheme | low-temperature reflux method | 300 W Xe lamp | reduce CO2 to CH4 and CO | 28.3 and 4.65 μmol g-1 h-1 | [ |
CoS1+x cocatalyst modified MIL-88B (Fe)/ZnIn2S4 | S-scheme | in situ photo-deposition method | 300W Xe lamp (λ > 420 nm) | H2 evolution and oxidate benzyl alcohol to benzaldehyde | 3164.9 and 3417.8 μmol g-1 h-1 | [ |
CdSe/KPN-HCP | S-scheme | two-step calcination method | 300W Xe lamp with a 420 nm cutoff filter | H2 evolution, H2O2 production, degradation of TC | 1860.8 and 900.0 μmol g-1 h-1, 95.6% in 60 min (TC, 10 mg L-1) | [ |
OV-TiO2@Cu7S4 | S-scheme | anion exchange and hydrothermal methods | 350W Xe lamp with a 420 nm cutoff filter | NH3 production | 133.42 μmol cm-2 h-1 | [ |
CuSe-Cu3Se2/ Ag-polyaniline | Dual S-scheme | co-precipitation method | 30W LED lamp | degradation of methylene blue (MB) | 100% in 45 min (MB, 20 mg L-1) | [ |
Ta3N5/CdS | S-scheme | wet-chemical method | 300W Xe lamp (λ ≥ 420 nm) | degradation of TC and Cr(VI) | 88.5% in 50 min (TC, 20 mg L-1), 96.1% in 40 min (Cr(VI), 10 mg L-1) | [ |
MoS2/SnO2 | S-scheme | hydrothermal method | 300W halogen lamp with a 420 nm cutoff filter | degradation of ciprofloxacin (CIP) and Cr(VI) and antibacterial | 97.6% in 100 min (CIP, 10 mg L-1) and 92.5% in 60 min (Cr(VI), 10 mg L-1) and 100% in 10 min (Escherichia coli, 30 mL) | [ |
Table 1 Overview of catalytic efficiency of chalcogenide-based S-scheme heterojunction photocatalysts.
Photocatalyst | Mechanism | Synthesis method | Light source | Application | Photocatalytic efficacy | Ref. |
---|---|---|---|---|---|---|
CdS/pyrene-alt-triphenylamine | S-scheme | in situ growth | 350 W Xenon arc lamp with 420 nm cut off filter | H2 evolution | 9.28 mmol h-1 g-1 | [ |
Co9S8/ZnSe | S-scheme | hydrothermal and solvothermal methods | 300W Xe lamp (λ ≥ 420 nm) | H2 evolution | 967.8 μmol g-1 h-1 | [ |
ZnWO4-ZnIn2S4 | S-scheme | low-temperature solvothermal method | 300 W Xenon arc lamp (λ ≥ 420 nm) | H2 evolution | 4925.3 μmol g-1 h-1 | [ |
MoO3-x@ZnIn2S4 | S-scheme | low-temperature reflux method | 300 W Xe lamp | reduce CO2 to CH4 and CO | 28.3 and 4.65 μmol g-1 h-1 | [ |
CoS1+x cocatalyst modified MIL-88B (Fe)/ZnIn2S4 | S-scheme | in situ photo-deposition method | 300W Xe lamp (λ > 420 nm) | H2 evolution and oxidate benzyl alcohol to benzaldehyde | 3164.9 and 3417.8 μmol g-1 h-1 | [ |
CdSe/KPN-HCP | S-scheme | two-step calcination method | 300W Xe lamp with a 420 nm cutoff filter | H2 evolution, H2O2 production, degradation of TC | 1860.8 and 900.0 μmol g-1 h-1, 95.6% in 60 min (TC, 10 mg L-1) | [ |
OV-TiO2@Cu7S4 | S-scheme | anion exchange and hydrothermal methods | 350W Xe lamp with a 420 nm cutoff filter | NH3 production | 133.42 μmol cm-2 h-1 | [ |
CuSe-Cu3Se2/ Ag-polyaniline | Dual S-scheme | co-precipitation method | 30W LED lamp | degradation of methylene blue (MB) | 100% in 45 min (MB, 20 mg L-1) | [ |
Ta3N5/CdS | S-scheme | wet-chemical method | 300W Xe lamp (λ ≥ 420 nm) | degradation of TC and Cr(VI) | 88.5% in 50 min (TC, 20 mg L-1), 96.1% in 40 min (Cr(VI), 10 mg L-1) | [ |
MoS2/SnO2 | S-scheme | hydrothermal method | 300W halogen lamp with a 420 nm cutoff filter | degradation of ciprofloxacin (CIP) and Cr(VI) and antibacterial | 97.6% in 100 min (CIP, 10 mg L-1) and 92.5% in 60 min (Cr(VI), 10 mg L-1) and 100% in 10 min (Escherichia coli, 30 mL) | [ |
Fig. 21. Ex situ and in situ irradiated XPS spectra of the RF, CdS and CdS/RF samples. High resolution spectra: C 1s (a), S 2p (b), and Cd 3d (c). (d) CPDs of RF and CdS. (e) Charge transfer mechanism of CdS/RF S-scheme heterojunction [153]. Copyright 2023, Elsevier.
Fig. 22. DMPO spin-trapping EPR signals for BIO, CdS, and the CdS-10/BIO hybrid: DMPO-?O2- (a) and DMPO-?OH (b). (c) Schematic of the S-scheme charge transfer mechanism of CdS-10/BIO photocatalyst [150]. Copyright 2023, Elsevier.
Fig. 23. CO2-TPD (a) and CO-TPD (b) profiles of Ta2O5, NiS, and 20NSTO. In situ DRIFTS measurements of Ta2O5 (c) and 20NSTO (d) under full spectrum light irradiation in pure CO2 [164]. Copyright 2023, Elsevier.
Fig. 26. Transient absorption spectra of pure TiO2 (a) and TC5 (b). (c) The corresponding transient absorption kinetic trajectories of TiO2 and TC5 at 645 nm within 100 ps [171]. Copyright 2022, American Chemical Society.
Fig. 27. AFM image of 7ZCS@DBTCN (a), and corresponding surface potential images of 7ZCS@DBTCN under dark (b) and light-irradiation (c) conditions; (d) The surface potential of the line scan from point A to point B [58]. Copyright 2023, Elsevier.
Fig. 28. Schematic of the band structures of HCN (a), ZIS (b), and HCN@ZIS (c). Planar average electron density difference Δρ(d), differential charge density plot (e) of HCN@ZIS. (f) Band positions and charge transfer maps of HCN and ZIS [179]. Copyright 2023, John Wiley and Sons.
|
[1] | 赵艳艳, 杨春燕, 张淑敏, 孙国太, 朱必成, 王临曦, 张建军. 飞秒瞬态吸收光谱研究ZnSe QDs/COF S型异质结光催化产H2O2中载流子传输机理[J]. 催化学报, 2024, 63(8): 258-269. |
[2] | 王福林, 李祥伟, 卢康强, 周漫, 余长林, 杨凯. S型CuInS2@CoS2异质结促进电荷转移以实现高效光催化CO2还原[J]. 催化学报, 2024, 63(8): 190-201. |
[3] | 王金龙, 刘东妮, 李铭洋, 谷骁一, 吴仕群, 张金龙. 通过金属空位工程促进CO2光还原[J]. 催化学报, 2024, 63(8): 202-212. |
[4] | 张棋祺, 苗慧, 王俊, 孙涛, 刘恩周. In2.77S4/K+掺杂g-C3N4自组装S型异质结光催化H2O和O2合成H2O2[J]. 催化学报, 2024, 63(8): 176-189. |
[5] | 任清汇, 徐亮, 吕梦雨, 张秩远, 栗振华, 邵明飞, 段雪. 电催化还原反应中的阳离子效应:最新进展[J]. 催化学报, 2024, 63(8): 16-32. |
[6] | 厉超, 王朔, 刘媛, 黄细河, 庄严, 吴舒鸿, 汪颖, 温娜, 吴凯丰, 丁正新, 龙金林. 共价有机框架双电场叠加实现高效光催化产氢[J]. 催化学报, 2024, 63(8): 164-175. |
[7] | 任卫杰, 李宁, 常青, 武杰, 杨金龙, 胡胜亮, 康振辉. 通过碳点从共价三嗪框架中提取光生空穴用于光合作用产过氧化氢[J]. 催化学报, 2024, 62(7): 178-189. |
[8] | 巴凯凯, 刘禹男, 张凯, 王平, 林艳红, 王德军, 李子亨, 谢腾峰. MOFs衍生的二氧化钛促进Ti-Fe2O3光阳极高效光电化学水氧化的多重效应[J]. 催化学报, 2024, 61(6): 179-191. |
[9] | 陈朝辉, 邓军, 郑燕梅, 张文君, 董琳, 陈祖鹏. 通过调节碳自由基的反应活性调控偶联反应产物和羰基化合物的选择性合成[J]. 催化学报, 2024, 61(6): 135-143. |
[10] | 邵韵航, 张亚宁, 陈潮锋, 窦帅, 娄阳, 董玉明, 朱永法, 潘成思. 通过晶面调控产生强内建电场以提高卟啉光催化剂的H2O2生成速率[J]. 催化学报, 2024, 61(6): 205-214. |
[11] | 刘高雄, 陈润东, 夏兵全, 吴珍, 刘善堂, 冉景润. 共价有机框架基光催化剂合成过氧化氢和高价值化学品的最新进展[J]. 催化学报, 2024, 61(6): 97-110. |
[12] | 杜仕文, 章福祥. 密度泛函理论在光催化中的普遍应用[J]. 催化学报, 2024, 61(6): 1-36. |
[13] | 任梦真, 刘天府, 董媛媛, 李正, 杨嘉新, 刁振恒, 吕红金, 杨国昱. CdS纳米棒/含Ni多钨氧酸盐光催化苯硫酚氧化偶联耦合制氢[J]. 催化学报, 2024, 61(6): 312-321. |
[14] | 房文健, 严嘉玮, 韦之栋, 刘军营, 郭伟琦, 江治, 上官文峰. 光解水制氢催化剂的掺杂改性[J]. 催化学报, 2024, 60(5): 1-24. |
[15] | 杜晨宇, 盛剑平, 钟丰忆, 何烨, 孙艳娟, 董帆. 光催化二氧化碳还原制多碳产物的先进光催化剂设计与机制: 现状与挑战[J]. 催化学报, 2024, 60(5): 25-41. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||