催化学报 ›› 2024, Vol. 63: 282-291.

• 论文 • 上一篇    

自支撑Ni(OH)2/NF催化剂高效电催化氧化5-羟甲基糠醛反应研究

霍韵滢a,1, 郭聪a,1, 张永乐a, 刘婧怡a, 张巧a,*(), 刘芝婷a, 杨光星a, 李仁贵b,*(), 彭峰a,*()   

  1. a广州大学化学化工学院, 广东广州 510006
    b中国科学院大连化学物理研究所, 大连洁净能源国家实验室, 催化基础国家重点实验室, 辽宁大连 116023
  • 收稿日期:2024-06-10 接受日期:2024-06-24 出版日期:2024-08-18 发布日期:2024-08-19
  • 通讯作者: *电子信箱: zhangqiao@gzhu.edu.cn (张巧),rgli@dicp.ac.cn (李仁贵),
  • 作者简介:

    1共同第一作者.

  • 基金资助:
    中国国家自然科学基金(51706231);广州市自然科学基金(202201020090);大连化学物理研究所催化基础国家重点实验室基金(N-22-10)

Realizing efficient electrochemical oxidation of 5-hydroxymethylfurfural on a freestanding Ni(OH)2/nickel foam catalyst

Yunying Huoa,1, Cong Guoa,1, Yongle Zhanga, Jingyi Liua, Qiao Zhanga,*(), Zhiting Liua, Guangxing Yanga, Rengui Lib,*(), Feng Penga,*()   

  1. aSchool of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, Guangdong, China
    bState Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
  • Received:2024-06-10 Accepted:2024-06-24 Online:2024-08-18 Published:2024-08-19
  • Contact: *E-mail: zhangqiao@gzhu.edu.cn (Q. Zhang), rgli@dicp.ac.cn (R. Li), fpeng@gzhu.edu.cn (F. Peng).
  • About author:

    1Contributed equally to this work.

  • Supported by:
    National Natural Science Foundation of China(51706231);Natural Science Foundation of Guangzhou City(202201020090);fund of the State Key Laboratory of Catalysis in DICP(N-22-10)

摘要:

随着太阳能发电能力的不断提高, 如何有效利用可再生太阳能产生的电能对生物质进行电化学转化成为了一个研究热点. 5-羟甲基糠醛(HMF)通过电化学实验转化为生物燃料和高附加值的含氧化学品, 为将可再生电力转化为化学品提供了一条有前途的替代途径. HMF的电催化氧化过程可以产生多种有价值的化学产品, 包括2,5-二甲酰呋喃、5-羟甲基-2-呋喃甲酸、5-甲酰-2-呋喃甲酸和2.5-呋喃二甲酸(FDCA). 其中, FDCA是生物基聚合物如聚乙烯呋喃酸酯的关键单体, 展现出取代石油衍生的聚对苯二甲酸乙二醇酯的潜力. 然而, 尽管镍基催化剂广泛应用于HMF电催化氧化反应, 但其相对较差的导电性和稳定性仍然限制了其潜在的应用.

本文报道了新颖的酸腐蚀诱导策略, 原位构建了自支撑式Ni(OH)2/NF电极, 研究了腐蚀溶液的浓度和酸蚀时间对泡沫镍电催化氧化HMF性能的影响. 结果表明, 较高的酸浓度和较长的酸蚀时间有利于HMF电化学氧化反应. 酸诱导刻蚀Ni(OH)2/NF电催化剂表现出稳定、高效的电化学氧化HMF性能, HMF转化率接近100%, FDCA产率与法拉第效率都在90%左右, 催化剂具有良好的稳定性, 连续5次电解循环的Ni(OH)2/NF催化活性仍然保持稳定. 原位形成策略使Ni(OH)2与NF之间形成致密的界面, 有助于在电化学反应中保持良好的导电性和稳定性. 原位电化学阻抗测试、原位拉曼和开路电位测试结果表明, 较好的催化性能得益于Ni(OH)2在HMF氧化过程中动态循环演化为NiOOH, 而HMF分子迅速消耗原位形成的NiOOH物种, 生成FDCA, 同时NiOOH在此过程中被还原为最初的Ni(OH)2. 将反应体系应用于连续流动电解池装置, 探究了流速、电压对HMF电化学流动池反应体系的影响, 在160 mL min-1和1.65 V (vs. RHE)的条件下, 该装置能够稳定运行60 h, FDCA的产率高达27 mg h-1 cm-2, 表现出较好的应用潜力.

综上, 本文提供了一种简单、经济、易于实施的设计策略, 利用酸腐蚀诱导策略在泡沫镍上原位构建出Ni(OH)2催化剂并应用于电催化氧化HMF反应中, 探索了镍基催化剂电催化氧化HMF性能, 实现了HMF分子的高效转化, 同时将其应用于小型连续流动电解池体系, 为HMF电化学工业化提供可能性.

关键词: 酸腐蚀诱导, 5-羟甲基糠醛, 电催化氧化, 镍基催化剂

Abstract:

With the continuous improvement of solar energy production capacity, how to effectively use the electricity generated by renewable solar energy for electrochemical conversion of biomass is a hot topic. Electrochemical conversion of 5-hydroxymethylfurfural (HMF) to biofuels and value-added oxygenated commodity chemicals provides a promising and alternative pathway to convert renewable electricity into chemicals. Although nickel-based eletrocatalysts are well-known for HMF oxidation, their relatively low intrinsic activity, poor conductivity and stability still limit the potential applications. Here, we report the fabrication of a freestanding nickel-based electrode, in which Ni(OH)2 species were in-situ constructed on Ni foam (NF) support using a facile acid-corrosion-induced strategy. The Ni(OH)2/NF electrocatalyst exhibits stable and efficient electrochemical HMF oxidation into 2,5-furandicarboxylic acid (FDCA) with HMF conversion close to 100% with high Faraday efficiency. In-situ formation strategy results in a compact interface between Ni(OH)2 and NF, which contributes to good conductivity and stability during electrochemical reactions. The superior performance benefits from dynamic cyclic evolution of Ni(OH)2 to NiOOH, which acts as the reactive species for HMF oxidation to FDCA. A scaled-up device based on a continuous-flow electrolytic cell was also established, giving stable operation with a high FDCA production rate of 27 mg h-1 cm-2. This job offers a straightforward, economical, and scalable design strategy to design efficient and durable catalysts for electrochemical conversion of valuable chemicals.

Key words: Acid-corrosion-induced, 5-Hydroxymethylfurfural, Electrocatalytic oxidation, Ni electrocatalysis