Please wait a minute...

过刊目录

    催化学报
    Chinese Journal of Catalysis

    2018, Vol. 39, No. 6
    Online: 2018-06-18

    封面介绍:

    李映伟等报道了钙磷石对水氧化反应的促进作用. 在锌锰氧化物催化水氧化同时原位负载钙磷石, 其温和条件下光催化水氧化性能提升近10 倍. 见本期第1017–1026 页.

    全选选: 隐藏/显示图片
    目录
    第39卷第6期目次
    2018, 39 (6):  0-0. 
    摘要 ( 136 )   PDF(1464KB) ( 435 )  
    亮点
    糖类化学催化转化为氨基酸
    张涛
    2018, 39 (6):  1013-1016.  DOI: 10.1016/S1872-2067(18)63093-1
    摘要 ( 504 )   [Full Text(HTML)] () PDF(713KB) ( 823 )  

    在著名的1953年米勒实验中,甲烷、氨气、氢气和水在持续电火花的作用下被转换成一系列天然氨基酸混合物,包括甘氨酸、丙氨酸、天冬氨酸和α-氨基丁酸等等.这种化学转化过程奠定了现代人们对地球生命起源的认知基础.氨基酸作为蛋白质的基本组成成分,在生产生活中有广泛的应用,扮演着不可或缺的角色.目前,微生物发酵过程是氨基酸的主要生产途径,其生产受到许多限制.通过高效的催化方法将氨气和丰富的可再生碳资源直接转化成一系列氨基酸的化学路径尚未实现.
    近日,新加坡国立大学颜宁教授课题组与厦门大学王野教授课题组等数个国内外研究小组合作,开辟了一种用化学方法将木质生物质转化成一系列氨基酸的新路径.转化策略分两步:首先将纤维素、葡萄糖等转化为α-羟基酸,再将α-羟基酸在氨水和氢气作用下制备对应的氨基酸.第二步是核心步骤,可以被看作是一种改进版的米勒实验:即采用特定的木质生物质衍生物替代甲烷作为底物,而负载的钌催化剂则取代电火花实现定向高效转化.该系统已经成功用于6种氨基酸制备,包括丙氨酸、亮氨酸、缬氨酸、天冬氨酸和苯丙氨酸等.
    将α-羟基酸转化成氨基酸的反应遵循先脱氢再还原胺化途径,其中脱氢是速率控制步骤.在该反应中,碳纳米管上负载的钌催化剂比其他贵金属催化剂表现出显著优异的活性.这主要得益于氨分子对钌纳米颗粒的配位作用增强了钌脱氢反应的活性.基于新开发的催化体系,葡萄糖经由两步化学反应转化成43%丙氨酸,产率与微生物发酵过程相当.文章作者还使用膜蒸馏作为产物分离提纯技术,完成了概念性工艺设计,并用实验加以验证.考虑到氨基酸的高价值,这项报道不仅代表了近年来生物质催化转化的一项重要学术突破,在进一步开发和优化后还具有很好的应用潜力.

    论文
    锌锰氧化物原位负载磷酸氢钙以提高水氧化性能:一种放氧化合物的模型
    江淼, 陈俊英, 李映伟
    2018, 39 (6):  1017-1026.  DOI: 10.1016/S1872-2067(18)63075-X
    摘要 ( 353 )   [Full Text(HTML)] () PDF(1279KB) ( 832 )  

    能源已经成为人类赖以生存和社会发展的物质基础.随着社会飞速发展和人口迅速增长,全球能源消耗逐年激增.资料显示,天然气、石油、煤这三种化石能源仍然是全球主要能源.众所周知,化石燃料不可再生,已探明储量的化石燃料仅可供人类使用100-200年.而且,化石燃料的燃烧会带来严重的环境污染和CO2等温室气体的排放.这些问题促使人类寻找开发其它可再生新型能源.而利用太阳光就是很重要的一个可行方案.
    光合作用整个过程主要涉及到光系统I (PS I)和光系统Ⅱ (PS Ⅱ).在PS I中,太阳光激发后会有一个电子的转移,使得NADP+被还原为NADPH,然后NADPH会和CO2作用产生糖类.在PS Ⅱ中,水通过Mn4CaO5簇被氧化为氧气.而人工光合作用则是将H2O和CO2转化为O2和其他含碳化合物或者是直接将H2O光解为H2和O2.通过人工模拟光合作用,将水裂解为H2和O2被视为更为直观可行的解决能源的方法.其中,水氧化是一个复杂缓慢的过程,也是水全裂解的瓶颈.因此设计合成高效水氧化催化剂是提高人工光合作用性能的关键.
    自然界光合作用中水氧化反应进行的场所是PSⅡ的放氧复合体(OEC),其活性中心是被蛋白质环境包围的Mn4CaO5簇.2011年,Shen等报道了解相率为1.9 Å的的PSⅡ的X-射线晶体结构,在电子密度图上清楚无疑地锁定了CaMn4O5簇中各个金属的位置以及它们周围的配体的位置.三个Mn、一个Ca、四个O组成一个立方烷的骨架结构,四号Mn通过氧桥键与立方烷中的一个Mn原子相连,该Mn原子上有两个水分子,另外两个水分子配位在Ca上.整个CaMn4O5簇周围的氨基酸起到了稳定OEC的作用.人们一般认为,Mn和Ca是PSⅡ中WOC必不可少的辅助因子.大量实验表明,钙是WOC的功能性和稳定性中必不可少的存在.
    锰和钙不仅在地球上资源丰富,而且于环境无害,因此是一种极具吸引力的水氧化催化剂.基于此,本文通过焙烧浸渍锰盐的金属有机骨架材料(MOF),成功合成出一种锌锰氧化物(ZMO),并在含三氟甲磺酸钙的中性磷酸缓冲溶液中进行的光催化水氧化反应的同时原位负载钙磷石(CaP),展现出TOF高达0.18 mmolO2molMn-1 s-1的优良性能.通过X射线粉末衍射、扫描电镜、透射电镜、原子吸收、X射线光电子能谱、热重、N2吸附-脱附等温线等对催化剂的物相、颗粒大小、元素组成以及比表面积等进行了一系列表征,证明了CaP作为助催化剂提高了锌锰氧化物的光催化产氧性能.该催化剂主要使用了过渡金属锌、锰,以及钙元素,并且在常温和中性条件下使用,因而可以被视为一种有效模拟OEC的功能型化合物.

    Pt/Nb-WOx催化甘油选择氢解制1,3-丙二醇:Nb掺杂抑制WOx的过度还原
    杨曼, 赵晓晨, 任煜京, 王佳, 雷念, 王爱琴, 张涛
    2018, 39 (6):  1027-1037.  DOI: 10.1016/S1872-2067(18)63074-8
    摘要 ( 410 )   [Full Text(HTML)] () PDF(1482KB) ( 1167 )  
    Supporting Information

    随着生物柴油产业的快速发展,甘油作为副产物大量过剩,通过甘油氢解制备具有高附加值的丙二醇既符合原子经济的原则,又具有重要的学术研究意义和应用价值.其中选择氢解制备1,3-丙二醇,因其产物在新型聚酯材料合成中的重要应用而备受关注,被认为是最具工业应用潜力的甘油转化工艺之一.但是由于反应空间位阻效应和热力学上的限制,甘油氢解制备1,3-丙二醇仍存在很大的挑战.目前,可高选择性制得1,3-丙二醇的催化剂体系主要是铱-铼催化剂和铂-钨催化剂两类;且反应通常需要较苛刻的压力.在我们的前期工作中,单原子/准单原子Pt催化剂(Pt/WOx)成功突破了这一压力壁垒,实现了在较低(1 MPa)氢气压力下优异的甘油选择氢解制1,3-丙二醇活性;但是该催化剂的耐压性能较差,是长期反应后失活的一个主要原因,且随着氢气压力的进一步升高,Pt/WOx催化剂活性大幅下降.研究发现,在高压氢气下,单原子/准单原子催化剂Pt/WOx中的WOx易被过度还原,导致催化剂失活,大大限制了该系列单原子催化剂在涉氢催化反应中的应用.因此,通过载体改性设计制备具有良好氢气稳定性的载体,有可能拓宽催化反应的氢压窗口.
    一般来讲,可以通过掺杂来改变载体的电子结构、表面化学性质等,进而改变催化剂活性、选择性和稳定性.为了提高单原子/准单原子催化剂(Pt/WOx)在高压氢气中的稳定性,本文采用原位掺杂法制备了一系列具有不同掺杂量、结构、及物化性质的Nb-WOx载体,并通过物理吸附,XRD,SEM,HRTEM,Raman,XPS对其进行表征.结果发现Nb掺杂的介孔WOx仍保持较高的比表面积(~136 m2/g);且当Nb掺杂量增加至2 wt%时,WOx由一维针状堆积转变为二维片状堆积;至5 wt%时,变为三维球状堆积.以所得的Nb-WOx为载体,我们制备了一系列Pt高度分散的Pt/Nb-WOx催化剂,并考察了其在甘油选择性氢解制备1,3-丙二醇反应中的催化性能.结果表明,当H2压力由1 MPa升到5 MPa后,Pt/WOx催化剂上1,3-丙二醇的收率由13.9%急剧下降到8.3%;但随着Nb掺杂量的增加(>2wt%),1,3-丙二醇的收率随压力升高并没有明显变化,说明该催化剂在高压氢气下的过度还原被有效抑制,反应的最佳氢气压力由1 MPa拓宽到5 MPa.其中,Nb的最佳掺杂量为2 wt%,在Pt/2% Nb-WOx催化剂上1 MPa甘油氢解转化率为40.0%,1,3-丙二醇收率11.9%;当氢气压力为5 MPa时,甘油氢解转化率为40.3%,1,3-丙二醇收率11.1%.值得一提的是,虽然Nb的掺杂使WOx的表面酸量增加,并且表现出了更优的酸催化纤维二糖水解活性,但是在甘油氢解制备1,3-丙二醇的反应中Pt/Nb-WOx催化剂的性能并没有得到提升反而略有下降,进一步证实了催化剂本身的表面酸性位并不是催化甘油选择氢解的活性中心,真正的活性中心很可能是氢气辅助下原位产生的B酸.
    对WOx载体进行Nb的掺杂改性,显著提高了单原子/准单原子Pt/WOx催化剂在高压氢气反应条件下的稳定性,进而在更宽压力范围内实现了甘油氢解制1,3-丙二醇的高效催化转化.同时,载体的改性也拓宽了该系列催化剂在其他涉氢反应中的应用范围,尤其是需要较高氢气压力的反应.
    一般来讲,可以通过掺杂来改变载体的电子结构、表面化学性质等,进而改变催化剂活性、选择性和稳定性.为了提高单原子/准单原子催化剂(Pt/WOx)在高压氢气中的稳定性,本文采用原位掺杂法制备了一系列具有不同掺杂量、结构、及物化性质的Nb-WOx载体,并通过物理吸附,XRD,SEM,HRTEM,Raman,XPS对其进行表征.结果发现Nb掺杂的介孔WOx仍保持较高的比表面积(~136 m2/g);且当Nb掺杂量增加至2 wt%时,WOx由一维针状堆积转变为二维片状堆积;至5 wt%时,变为三维球状堆积.以所得的Nb-WOx为载体,我们制备了一系列Pt高度分散的Pt/Nb-WOx催化剂,并考察了其在甘油选择性氢解制备1,3-丙二醇反应中的催化性能.结果表明,当H2压力由1 MPa升到5 MPa后,Pt/WOx催化剂上1,3-丙二醇的收率由13.9%急剧下降到8.3%;但随着Nb掺杂量的增加(>2wt%),1,3-丙二醇的收率随压力升高并没有明显变化,说明该催化剂在高压氢气下的过度还原被有效抑制,反应的最佳氢气压力由1 MPa拓宽到5 MPa.其中,Nb的最佳掺杂量为2 wt%,在Pt/2% Nb-WOx催化剂上1 MPa甘油氢解转化率为40.0%,1,3-丙二醇收率11.9%;当氢气压力为5 MPa时,甘油氢解转化率为40.3%,1,3-丙二醇收率11.1%.值得一提的是,虽然Nb的掺杂使WOx的表面酸量增加,并且表现出了更优的酸催化纤维二糖水解活性,但是在甘油氢解制备1,3-丙二醇的反应中Pt/Nb-WOx催化剂的性能并没有得到提升反而略有下降,进一步证实了催化剂本身的表面酸性位并不是催化甘油选择氢解的活性中心,真正的活性中心很可能是氢气辅助下原位产生的B酸.
    对WOx载体进行Nb的掺杂改性,显著提高了单原子/准单原子Pt/WOx催化剂在高压氢气反应条件下的稳定性,进而在更宽压力范围内实现了甘油氢解制1,3-丙二醇的高效催化转化.同时,载体的改性也拓宽了该系列催化剂在其他涉氢反应中的应用范围,尤其是需要较高氢气压力的反应.

    原子层沉积制备掺氮碳膜修饰的Pt/CNTs实现甲醇高效电催化氧化
    杨慧敏, 张佰艳, 张斌, 高哲, 覃勇
    2018, 39 (6):  1038-1043.  DOI: 10.1016/S1872-2067(18)63066-9
    摘要 ( 381 )   [Full Text(HTML)] () PDF(632KB) ( 916 )  

    甲醇燃料电池作为一种清洁、高效的能源转化形式广受关注.贵金属Pt是甲醇燃料电池阳极催化剂不可缺少的活性组分,但Pt价格昂贵,易与CO等中间体强相互作用而中毒失活,从而限制了甲醇燃料电池的广泛应用.因此,如何提高Pt的利用率成为一个关键问题.研究表明,在碳材料载体中掺杂氮元素,改变了载体本身的表面结构和电子性质,有利于Pt颗粒的成核和生长,可获得尺寸小、分布均匀的Pt纳米颗粒,能显著提升催化反应活性和Pt利用率.然而,传统的氮掺杂方法需要在高温、高压及氨气条件下进行,增加了催化剂制备难度和成本.
    原子层沉积技术是逐层超薄沉积技术,能够在原子级别精确控制膜的厚度,既可制备尺度均一、高度可控的纳米粒子,也能实现材料表面的可控超薄修饰.本课题组利用原子层沉积技术优势,首先在碳纳米管表面沉积了直径2nm左右的Pt纳米颗粒,然后在Pt纳米颗粒外表面超薄修饰聚酰亚胺膜,通过后处理得到多孔掺氮碳膜修饰的Pt/CNTs催化剂.碳膜的厚度可简单通过调控聚酰亚胺膜的沉积厚度来控制.结果表明,适当厚度的碳膜修饰Pt/CNTs催化剂可显著提升其甲醇电氧化性能,电流密度可达商业20% Pt/C的2.7倍,催化剂稳定性也显著改善.然而碳膜修饰过厚会导致催化剂活性降低.通过计算催化剂电化学活性表面积发现,超薄修饰碳膜后催化剂活性表面积有所降低,这是由于碳膜的覆盖导致表面Pt原子数减少.修饰前后催化剂颗粒尺度变化不大,推测催化剂活性的提高与形成了有利于催化反应的Pt-碳膜界面有关.然而,当碳膜修饰层过厚时,会导致反应物分子难以扩散到Pt颗粒表面,使催化剂活性降低.预吸附单层CO溶出实验结果表明,多孔掺氮碳膜超薄修饰Pt/CNTs催化剂后,CO氧化峰的起始电位和峰值电位都向低电位处偏移,这表明Pt表面吸附的CO在较低电位下即可被氧化,CO更容易从Pt表面移除,从而提高了催化剂的抗CO毒化能力.X射线光电子能谱实验结果进一步表明,经多孔掺氮碳膜修饰后,Pt的4f电子向高结合能处偏移,表明Pt原子周围的电子密度减小,从而弱化了Pt对CO吸附的σ-π键反馈作用,即减弱了Pt原子对CO的吸附,这是导致掺氮碳膜修饰后催化剂活性及稳定性都大幅提高的原因.

    聚多巴胺功能化硅胶沉积单分散Pd纳米粒子的简易原位合成及用作醇需氧氧化反应的多相可循环使用的纳米催化剂
    Hojat Veisi, Ahmad Nikseresht, Shahin Mohammadi, Saba Hemmati
    2018, 39 (6):  1044-1050.  DOI: 10.1016/S1872-2067(18)63049-9
    摘要 ( 336 )   [Full Text(HTML)] () PDF(781KB) ( 663 )  

    本文报道了一种不使用任何稳定剂或还原剂,原位合成硅胶/聚多巴胺复合物(SiO2/PDA)负载的Pd纳米颗粒(Pd NPs)的简易方法.该方法先将PDA涂覆的SiO2颗粒浸在Pd镀液中,然后利用PDA中含N基团的还原能力将Pd物种原位还原为纳米簇合物.并采用高分辨透射电镜、前场扫描电镜、能量散射谱、X射线衍射、X射线光电子能谱、诱导耦合等离子体和红外光谱等手段对所得纳米复合物的结构、形貌和物化性质进行了表征.被PDA基团锚合的Pd NPs具有显著的小颗粒(30-40 nm)特性.作为一个可循环使用的纳米催化剂,SiO2/PDA/Pd NPs在醇的需氧氧化反应中表现出高活性.另外,催化剂经回收和多次重复使用时未出现明显的失活.

    可见光辐射下富勒烯[60]-氧化铁复合催化剂的制备及光芬顿法降解有机污染物研究
    邹丛阳, 孟则达, 纪文超, 刘守清, 申哲民, 张园, 蒋妮姗
    2018, 39 (6):  1051-1059.  DOI: 10.1016/S1872-2067(18)63067-0
    摘要 ( 275 )   [Full Text(HTML)] () PDF(1871KB) ( 720 )  

    采用简单的可升级的化学浸渍法,将Fe2O3掺杂到富勒烯[60](C60)上,制得C60-Fe2O3纳米复合材料.采用了粉末X射线衍射、X射线光电子能谱(XPS)、扫描电镜、高分辨透射电镜、紫外-可见吸收光谱、拉曼光谱和傅里叶变换红外光谱,对其进行了表征.结果发现,XPS数据中,Fe2p3/2和Fe2p1/2的XPS特征峰分别位于结合能710.9和724.1eV处,对应Fe2O3的Fe3+.富勒烯颗粒均匀分散在Fe2O3纳米颗粒表面,Fe2O3纳米颗粒的平均尺寸大约为20-30nm;Fe2O3对于可见光只有微弱的吸收,而制备出的C60-Fe2O3纳米复合材料对于可见光有较强的吸收响应.
    本文将C60-Fe2O3纳米复合光催化材料用于光催化降解50mL,20mg/lMB和50mL,10mg/L苯酚实验.结果发现,在双氧水存在下和可见光(>420nm)辐射条件下,C60-Fe2O3对上述有机污染物均有较好的降解效果.通过测定上述有机物的削减程度,评估了C60-Fe2O3催化剂的光催化活性,通过改变实验条件,得到可见光/C60-Fe2O3/双氧水体系的最佳光催化降解条件:在pH值为3.06~10.34的范围内,投加0.02g催化剂,5mol/L双氧水.结果表明,在最佳条件下,亚甲基蓝在80 min内脱色率能达到98.9%,矿化率能达到71%.浸出实验的结果表明,C60-Fe2O3复合光催化剂中的铁浸出量可以忽略不计.经过5次循环使用后,C60-Fe2O3复合光催化剂仍具有较高的光催化活性.为了进一步验证C60-Fe2O3复合光催化剂的应用广泛性,本文在可见光/C60-Fe2O3/双氧水体系下,开展了降解RhB,MO和苯酚的试验,结果发现,该催化剂它们也具有高的降解效果.机理研究发现,C60-Fe2O3复合光催化剂的高效催化能力可归因于C60和Fe2O3的协同效应:在可见光辐射下,由于C60具有独特的光敏性特征,能够接收电子并把它们转移到Fe2O3的Fe3d轨道,并通过一系列反应,达到Fe3+/Fe2+循环平衡.利用活性组分捕集实验,对光催化反应过程中的主要活性氧化剂进行了区分.结果表明,羟基自由基在整个过程中发挥了最主要的作用.

    基于酸促进的单原子活性位点Ir-La-S/AC催化剂在甲醇羰基化中的应用
    任周, 吕元, 冯四全, 宋宪根, 丁云杰
    2018, 39 (6):  1060-1069.  DOI: 10.1016/S1872-2067(18)63019-0
    摘要 ( 317 )   [Full Text(HTML)] () PDF(1114KB) ( 843 )  

    甲醇羰基化是世界上重要的均相催化反应之一.无论是Rh或者Ir体系,虽然碘甲烷的引入会带来腐蚀问题,但是绝大多数的甲醇羰基化反应过程都需要碘甲烷作为助催化剂才能有较好的活性.多年来人们在不断研究非均相羰基化过程(即均相多相化),以避免均相中间歇生产和产物分离的缺点.其中Ir体系的非均相羰基化报道很少,值得关注的是Eastman公司将Ir-La/AC体系成功地应用于非均相的甲醇羰基化过程.基于此,本文试图引入硫元素以提高Ir-La/AC催化剂的羰基化活性,即将含有La和Ir前驱体的硫酸溶液通过共浸渍法制备了高活性的Ir-La-S/AC催化剂,评价了该系列催化剂的性能,并进行了深入的表征.Ir-La-S/AC催化剂的TOF最高可达2760h-1,远远高于Ir-La/AC催化剂1000h-1.HAADF-STEM的结果表明,Ir-La-S/AC催化剂中Ir物种绝大多数处于单分散状态,而Ir-La/AC催化剂中的Ir物种为平均粒径为1.5nm的纳米颗粒状态,说明Ir-La-S/AC催化剂中Ir的使用效率要远远高于Ir-La/AC.其次,NH3-TPD的结果显示在制备过程中硫酸的加入使催化剂的酸性位点大幅度增多,而酸性位可以加速Ir体系机理中CO插入这一决速步骤.目前普遍认为,Ir+物种为甲醇羰基化的活性中心,故通过TPR和原位XPS测试证实了Ir-La-S/AC催化剂比Ir-La/AC中的Ir物种在通过CO/H2=10:1混合气活化后更容易还原到Ir+,而且这又说明在Ir-La-S/AC催化剂中更易发生Ir3+物种还原消除为Ir+物种且同时产生酰基碘(AcI)这一重要循环步骤.所以Ir-La-S/AC催化剂具有更多的酸促进位点,更高的Ir分散度和更多的Ir+活性物种.此外,Ir-La-S/AC催化剂的羰基化活性在66h之后才趋于稳定(1660h-1),通过XRF测试发现该过程中有少量的硫流失,而大部分剩余的硫比较稳定的存在于催化剂表面,且通过ICP-MS结果显示Ir和La没有明显的流失,因此66h之前活性下降主要是由于部分S的流失,而不是金属物种Ir和La流失造成的.总之,我们成功地制备了一种硫促进的双功能Ir-La-S/AC催化剂,这种方法不仅减轻了由液体酸带来的环境污染和设备腐蚀,同时避免了液相铱体系催化剂的循环使用问题.

    2-乙基蒽醌在双金属整体式催化剂上的氢化反应:实验和DFT研究
    郭燕燕, 代成娜, 雷志刚
    2018, 39 (6):  1070-1080.  DOI: 10.1016/S1872-2067(18)63035-9
    摘要 ( 356 )   [Full Text(HTML)] () PDF(1792KB) ( 991 )  

    过氧化氢(H2O2)是一种绿色化工原料和环境友好氧化剂.目前,超过98%的H2O2是通过蒽醌法生产.蒽醌法主要包括2-乙基蒽醌氢化生成2-乙基氢蒽醌和2-乙基氢蒽醌氧化生成2-乙基蒽醌和H2O2的过程.其中,2-乙基蒽醌氢化是关键步骤.在氢化过程中,生成的2-乙基氢蒽醌和四氢-2-乙基氢蒽醌是目标产物,同时生成许多副产物.目前,Pd颗粒催化剂是广泛使用的催化剂,但是蒽醌氢化过程中,质量传递是主要的控制因素.与颗粒催化剂对比,整体式催化剂可以减弱整个反应的内外扩散,提高反应速率.很多研究结果显示,整体式催化剂的传质优于颗粒催化剂,可以提高催化效率.近期许多研究显示,双金属颗粒催化剂在很多氢化反应中体现出优异的催化性能.本工作制备了双金属整体式催化剂,考察了其在蒽醌氢化过程中的催化性能.
    首先,通过浸渍法制备了4种双金属整体式催化剂Pd-M/SiO2/COR (M=Ni,Fe,Mn和Cu)以及Pd/SiO2/COR和Ni/SiO2/COR两种单金属整体式催化剂.催化活性结果显示,Ni/SiO2/COR的H2O2产量低于Pd/SiO2/COR,而且在700℃还原的Pd-Ni/SiO2/COR整体式催化剂在Pd/M=2时取得了最高选择性(95.3%)和H2O2产量(7.5g/L).然后,考察了金属负载量的影响.结果显示,在金属负载量低于0.4%时,随着金属负载量增加,选择性和H2O2产量增加,在金属负载量高于0.4%时,随着金属负载量增加,选择性和H2O2产量降低.
    TEM结果表明,添加第二种金属后,双金属整体式催化剂颗粒尺寸变小,分布更均匀.EDS结果显示,双金属形成了合金.H2-TPR结果显示,随着Pd/M比率增加,还原温度降低,说明Pd有助于第二种金属氧化物的还原.这可能是由于Pd表面的氢溢流到第二种金属(Ni,Fe,Mn和Cu)表面.此外,文献结果表明,合金的形成能够抑制PdH的形成.本工作表明添加第二种金属(Ni,Fe,Mn和Cu)后,PdH的峰强度减弱或者峰消失,也说明形成了合金.XPS结果显示,添加第二种金属后,在336.3±0.1和341.4±0.1eV出现了新的Pd3d5/2和Pd3d3/2峰,说明形成了合金.H2-O2滴定结果表明,Pd-Ni/SiO2/COR的Pd分散度和Pd比表面积都高于其他双金属催化剂,说明第二种金属Ni更有利于促进Pd的分散,减弱颗粒集聚,揭示了Q#8197;Pd和Ni之间强烈的相互作用.
    DFT计算结果显示,Pd3M1(M=Ni,Fe,Mn和Cu)双金属整体式催化剂和2-乙基蒽醌之间的结合能低于Pd/SiO2/COR和2-乙基蒽醌之间的结合能,但是Pd3M1(M=Ni,Fe和Mn)双金属催化剂和2-乙基氢蒽醌之间的结合能减小得很少,这可能是由于2-乙基蒽醌的C=O和第二种金属之间具有强烈相互作用的缘故.Pd3Cu1双金属催化剂和2-乙基氢蒽醌之间的结合能减小很多,主要是由于Pd3Cu1表面不利于2-乙基氢蒽醌的吸附.
    因此,Pd-Ni/SiO2/COR比Pd/SiO2/COR,Ni/SiO2/COR和其他的双金属整体式催化剂具有更高的选择性和H2O2产量,主要是由于合金的形成以及2-乙基氢蒽醌的C=O双键和2-乙基氢蒽醌强烈的相互作用.

    Pt/ZnO在室温水相无碱条件下绿色催化苯甲醇选择性氧化
    刘娟娟, 邹世辉, 吴嘉超, Hisayoshi Kobayashi, 赵红挺, 范杰
    2018, 39 (6):  1081-1089.  DOI: 10.1016/S1872-2067(18)63022-0
    摘要 ( 554 )   [Full Text(HTML)] () PDF(1245KB) ( 1287 )  

    醇类化合物选择性氧化是有机合成中一个非常重要的反应,在精细化工领域具有重要应用.而以水为绿色溶剂,分子氧为绿色氧化剂实现醇类化合物选择性氧化是绿色化学领域的一大挑战.Pt催化剂由于其优异的活化氧气和C-H键的能力在该反应中得到了广泛应用.但是,常规的Pt催化剂通常需要在较高温度和较高氧气压力以及加碱的条件下才能发挥作用,从而引起了催化剂腐蚀等一系列问题.从绿色化学角度出发,进一步优化Pt催化剂,让其能够在室温无碱条件下以空气为氧化剂选择性氧化醇类合成羰基化合物具有重要的研究价值和应用前景.
    本文通过化学还原法制备了Pt/ZnO催化剂,系统研究了该催化剂在水相无碱条件下选择性氧化苯甲醇生成苯甲醛反应中的催化性能.X射线电子衍射和透射电镜等结果表明,Pt颗粒较小(3.2±0.3nm),均匀分散在ZnO载体上;X射线光电子能谱表明ZnO载体能够稳定Pt纳米颗粒表面的Pt0物种.上述催化剂在水相苯甲醇选择性氧化反应中,在室温下即可催化空气高选择性氧化苯甲醇到苯甲醛(选择性>99%),并表现出比Pt/SiO2,Pt/Al2O3,Pt/TiO2,Pt/Ca (Mg)-ZSM-5等催化剂更为优异的催化活性.这可归结于Pt和ZnO之间的协同作用.该协同作用通过动力学实验和密度泛函理论计算(DFT)得到了证实.氧分压实验表明,在以空气为氧化剂时,O2的活化并不是限制Pt/ZnO催化活性的关键因素,而动力学同位素效应实验则证实了苯甲醇的C-H键活化是整个反应的决速步骤.通过构建不同的理论模型,分别计算了Pt/ZnO界面处以及纯Pt位点上苯甲醇选择性氧化的反应过程.结果表明,苯甲醇和氧气分子倾向于分别在ZnO和Pt上进行吸附,随后由吸附的氧气分子来活化苯甲醇中的C-H键,进而生成苯甲醛和水.而当ZnO不参与苯甲醇的吸附活化时,整个反应的活化能会大大提高,表明ZnO和Pt之间的协同作用对于整个反应至关重要.此外,Pt/ZnO表现出非常优异的稳定性,循环使用4次后,催化剂结构以及催化活性没有显著变化.
    进一步向Pt/ZnO催化剂中引入少量Bi元素对Pt的电子结构进行修饰,可以将Pt/ZnO的催化活性提高3倍.所制备的Pt/Bi-ZnO复合物是目前报道的相同条件下催化苯甲醇选择性氧化反应转化频率(45.1h-1)最高的催化剂.

    介质阻挡放电等离子体法制备优异光催化合成过氧化氢性能的氮空穴掺杂石墨相氮化碳
    李旭贺, 张健, 周峰, 张洪亮, 白金, 王彦娟, 王海彦
    2018, 39 (6):  1090-1098.  DOI: 10.1016/S1872-2067(18)63046-3
    摘要 ( 308 )   [Full Text(HTML)] () PDF(924KB) ( 1034 )  

    过氧化氢(H2O2)是一种绿色氧化剂,广泛应用于纺织、印染、造纸和医药等行业.目前,工业上采用蒽醌法制备H2O2,它由于需要多步加氢和氧化处理,因此能耗非常大.研究发现,采用贵金属催化剂可以将氢气和氧气直接合成H2O2,但催化剂价格过高,且反应本身存在爆炸风险.近年来,半导体光催化合成H2O2受到广泛关注.研究发现,在水存在下,光电子可以将氧气还原得到H2O2.介质阻挡放电(DBD)等离子体广泛应用于材料合成、挥发性有机物处理、汽车尾气净化和材料表面处理等.石墨相氮化碳(g-C3N4)是新型非金属光催化剂,以其性质稳定、能带适中和制备方便等优点而广受青睐.然而g-C3N4的比表面积和电荷分离效率较低,大大限制了其应用.
    本文采用DBD等离子体法在氢气气氛下制备了N空穴掺杂的石墨相氮化碳,采用XRD,N2吸附,UV-Vis,SEM,TEM,XPS,EIS,EPR,O2-TPD及PL等方法对催化剂进行了表征,并考察了N空穴对催化剂结构性质、光学性质及光催化合成H2O2性能的影响.结果显示,当DBD等离子体处理时间小于30min时,所制催化剂颗粒尺寸显著小于焙烧法得到的,因而其比表面积显著提高.N空穴的引入降低了催化剂的能带,提高了可见光区的吸收.此外,N空穴作为反应活性位,既能吸附反应物氧气分子,又能捕获光电子并促进光电子从催化剂向氧气分子转移,进而发生后续还原反应.等离子体处理30min得到的催化剂光催化合成H2O2性能最佳,是纯g-C3N4的11倍.本文为g-C3N4基催化剂的制备提供了一个新方法.

    nV-MCM-41催化剂的制备及其催化CO2氧化丙烷脱氢反应性能
    韩再芳, 薛旭良, 吴建民, 郎万中, 郭亚军
    2018, 39 (6):  1099-1109.  DOI: 10.1016/S1872-2067(18)63048-7
    摘要 ( 329 )   [Full Text(HTML)] () PDF(1217KB) ( 821 )  

    丙烯是一种重要的化工原料,其下游产品丰富,用途广泛,主要用于生产聚丙烯、丙烯腈、丙烯酸和丁醇等化工产品.丙烯的需求正在不断增长,而传统的丙烯生产方法如蒸汽裂解和石油催化裂化,存在反应温度高、积碳严重且丙烯收率较低等问题.因此研制丙烷脱氢制取丙烯的高效催化剂尤为重要.研究发现,以CO2作为温和氧化剂进行逆水气变换反应可有效促进丙烷脱氢.催化剂主要由活性组分与载体构成,本文选择可用于活化丙烷的钒作为主要活性组分.钒氧化物在载体上的高度分散是提高丙烷脱氢反应活性的关键.MCM-41拥有较大的比表面积和高度有序的介孔结构,可更有效地分散活性位点.本文采用一步法合成了不同钒含量的nV-MCM-41催化剂(1.9-10.6wt%),并研究了其在以下条件下催化丙烷氧化脱氢制丙烯反应性能:600℃,催化剂质量0.2g,进料气体组成C3H8/CO2/Ar (摩尔比)=1/4/4,进料气体总流量15mL/min.其中6.8V-MCM-41催化剂具有最高的活性,其初始丙烷转化率达58%,丙烯选择性达92%,远高于相似反应条件下早期研究的nV-SBA-15催化剂.并在四次反应-再生循环中始终保持其原来的高反应活性.本文借助于N2吸附-脱附、拉曼光谱(Raman)、X射线光电子能谱(XPS)和热重(TG)等手段探究了不同钒含量的nV-MCM-41催化剂在丙烷脱氢反应中催化性能差异的原因.
    氮气吸附-脱附结果表明,所有催化剂都存在典型的高度有序的介孔结构,并没有因为钒组分的掺杂而破坏.nV-MCM-41催化剂拥有较大比表面积,并随钒掺杂量的增加而减小.其中,10.8V-MCM-41催化剂的比表面积急剧下降,可能是由于产生了结晶的V2O5阻塞了孔道.Raman结果表明,当钒负载量超过6.8wt%时,出现了V2O5的结晶峰.另外根据单分散的四面体钒氧化物的特征峰面积发现,6.8V-MCM-41催化剂中钒物种分散度最高,与其具有最高催化活性结果一致.XPS结果也进一步证明6.8V-MCM-41钒物种的分散度最高.在连续反应过程中6.8V-MCM-41催化剂失活较快,可归结于活性钒位点的还原与催化剂表面的积碳.通过氧化再生,可恢复催化剂活性,并且在4次再生循环中始终保持其良好稳定的活性.

    新型高效Brönsted酸性离子液体催化剂体系催化烯烃齐聚反应
    王国芹, 宋河远, 李瑞云, 李臻, 陈静
    2018, 39 (6):  1110-1120.  DOI: 10.1016/S1872-2067(18)63071-2
    摘要 ( 323 )   [Full Text(HTML)] () PDF(580KB) ( 687 )  

    烯烃齐聚是重要的化工反应之一,是指低碳烯烃在催化剂存在下发生聚合反应,生成一个或多个单体重复相连的化合物过程.烯烃齐聚反应是一种碳链增长过程,是生成线性α-烯烃的重要过程.齐聚反应主要生成单体的二聚、三聚、四聚或五聚物等低聚体,发生反应的单体主要是低碳烯烃如乙烯、丙烯、正丁烯和异丁烯等.烯烃齐聚产物应用十分广泛,可以用于合成环境友好的液体燃料、长链烷烃润滑油、表面活性剂、增塑剂、汽油柴油添加剂等重要化工产品,同时齐聚产物本身亦是重要的化工中间体和化学试剂.烯烃齐聚反应研究的重点内容是开发新颖高效的催化剂,以满足不同需要,而应用Brönsted酸性功能化离子液体作为催化剂用于齐聚反应的报道较少.
    本文考察了新型高效催化剂体系(Brönsted酸性离子液体作为主催化剂,三辛基甲基氯化铵作为助剂)对烯烃齐聚反应的催化性能.合成的Brönsted酸性离子液体通过红外光谱、紫外可见光谱、1H核磁共振和13C核磁共振等进行系列表征,并进一步分析其结构与酸度的关系.结果表明,在相同的反应条件下,Brönsted酸性离子液体[HIMBs]HSO4对烯烃齐聚反应具有最好的催化活性.本文考察了不同离子液体、离子液体用量、不同助剂、助剂用量、反应时间、反应压力、反应温度和不同溶剂等因素对反应的影响,得到了最佳反应条件:催化剂体系为[HIMBs]HSO4与三辛基甲基氯化铵,[HIMBs]HSO4/异丁烯摩尔比为25%,[HIMBs]HSO4/助剂(三辛基甲基氯化铵)摩尔比为20:1,140℃ 8h,反应起始压力为2.0MPa,无添加溶剂(离子液体本身作催化剂和溶剂).在最佳反应条件下对反应物进行了拓展,并研究了催化剂体系的循环使用情况.在最佳反应条件下,异丁烯齐聚反应中反应物转化率为83.21%,三聚物选择性高达35.80%,二聚物选择性为52.02%,四聚物选择性为3.14%.结果表明,本文提出的催化剂体系对烯烃齐聚反应具有较好的催化性能.同时,催化剂体系可以通过静置分层与产物分离,并进行循环使用.根据以往的报道和反应产物分布,推测了烯烃齐聚反应机理.烯烃齐聚反应为酸催化反应,生成碳正离子中间体进行碳链增长,生成齐聚产物.

    Zr-Al复合氧化物负载Pt催化甘油氢解制正丙醇
    李闯, 何博, 凌雨, 曾志荣, 梁长海
    2018, 39 (6):  1121-1128.  DOI: 10.1016/S1872-2067(18)63068-2
    摘要 ( 385 )   [Full Text(HTML)] () PDF(860KB) ( 892 )  

    近年来,甘油氢解的研究主要集中在生成1,2-丙二醇和1,3-丙二醇二元醇.与二元醇相比,正丙醇也是一种昂贵的化学品,用过量的甘油直接氢解合成高选择性的正丙醇将是一个非常好的生产途径.因为铂金属具有较强的断C-O键的能力,所以甘油氢解制正丙醇的催化剂主要采用铂作为活性组分.本文以铂为活性组分,采用浸渍法将其负载到不同Zr/Al比的Zr-Al复合氧化物上制得2.5% Pt/ZrxAl1-xOy催化剂,并将其应用到甘油氢解反应中,探讨了Zr/Al比对甘油氢解制正丙醇反应性能的影响.
    表征结果发现,锆铝混合氧化物经过400℃焙烧后为无定形态的复合金属氧化物,载体中无单相氧化锆或氧化铝存在.随着锆含量增加,催化剂酸性位点向强酸方向移动.不同Zr/Al比的锆铝混合氧化物负载铂催化剂的评价结果发现,甘油转化率随催化剂中铝含量增加而增大;锆铝比大于5:5时,丙醇(正丙醇+异丙醇)的选择性很高,普遍大于87%;锆铝比至7:3时,正丙醇选择性最高.通过X射线衍射、CO化学吸附、H2程序升温还原、吡啶吸附、氨气程序升温脱附等方法对催化剂进行了表征,发现随着锆铝混合氧化物中锆含量的增加,催化剂的酸性位点向强酸方向移动,调变Zr/Al比促进了铂颗粒的分散,实现了催化剂表面酸量和强酸位点的定向调控.当锆铝比增加至7:3时,催化剂的强酸位点占总酸含量的91.2%.对比催化剂酸性分析和反应结果可知,催化剂表面的总酸含量高有助于甘油转化;强酸位点有助于甘油深度脱水生成丙醇;正丙醇的选择性则可能与NH3脱附温度在580℃处的强酸位和较大的Pt颗粒有关.当Zr/Al比为7:3时,催化剂表面强酸位点占91.2%,而强酸位点的增加有助于甘油的深度脱水形成正丙醇.因此,以10%甘油水溶液为原料,在240℃和6.0MPa初始氢气压力条件下反应8h,甘油转化率和正丙醇的选择性分别达到81.2%和86.3%.催化剂经过5次循环使用后,甘油转化率和丙醇(正丙醇+异丙醇)选择性几乎不变,但正丙醇的选择性略有降低.使用5次后的催化剂表面的总酸量变化不大,但酸分布变化较大,即强酸比例下降.可见,催化剂活性变化小是由于其表面酸量变化不大,而正丙醇选择性下降与强酸位点比例下降有关.

    Cs/ZSM-35分子筛催化甲缩醛和乙酸甲酯发生一步法羟醛缩合反应
    马占玲, 马现刚, 刘红超, 朱文良, 郭新闻, 刘中民
    2018, 39 (6):  1129-1137.  DOI: 10.1016/S1872-2067(18)63069-4
    摘要 ( 352 )   [Full Text(HTML)] () PDF(580KB) ( 911 )  
    Supporting Information

    丙烯酸及其酯是重要的化工原料,广泛应用于涂料、粘结剂、纤维等领域,目前工业上常采用丙烯两段氧化法进行制备.然而该方法以石油基原料丙烯为源头,采用V/Mo/Bi等金属催化剂,不符合可持续发展理念,且存在环境污染及氧气下产物易过度氧化等问题.因此,如何高效、安全、大规模工业化制备丙烯酸及其酯是研究者追求的目标.以乙酸甲酯(MAc)和甲醛为原料,通过羟醛缩合一步制备丙烯酸及其酯是一条完全不同于丙烯氧化法的合成路径,原料均可由煤基甲醇得到,符合我国“富煤、贫油、少气”的基本能源结构,且该方法碳原子利用率为100%,副产物仅为水,属于绿色环保合成路径.
    羟醛缩合是典型的碳链增长反应,可在酸性催化剂、碱性催化剂、以及酸碱双功能催化剂存在下发生.碱性催化剂一般为负载型碱金属氧化物,例如以SiO2为载体的负载型Na,K,Cs氧化物催化剂等,但都存在活性组分流失的问题,进而导致催化剂的失活,难以实现工业化.酸碱双功能催化剂是目前研究的热点,由于具有酸催化剂的高选择性和碱催化剂的高活性,其反应性能要远优于单一酸性催化剂和单一碱性催化剂,广大研究者对此进行了深入广泛的研究,目前基本处于实验室阶段.相对而言,目前酸性催化剂上通过羟醛缩合反应制备丙烯酸及其酯的研究工作较少,特别是以固体酸为催化剂进行乙酸甲酯和甲醛气固相反应研究非常少见.
    我们以甲缩醛为甲醛源,创新性地采用固体硅铝分子筛为酸性催化剂,催化甲缩醛(DMM)和MAc发生羟醛缩合反应来制备丙烯酸.硅铝分子筛具有较高的活性,可高效地催化羟醛缩合反应,且由于分子筛催化剂具有很好的再生性能,即使催化剂寿命较短,也可采用流化床或移动床等反应器进行工业化,因此存在良好的工业化前景.为了进一步深入研究酸性位和碱性位各自对DMM和MAc羟醛缩合反应的影响,本文以HZSM-35分子筛为载体,采用浸渍法制备不同碱金属铯氧化物含量的催化剂,利用氮气吸附/脱附方法和化学程序升温(NH3-TPD)方法对其孔结构和酸性质进行表征,并进一步考察催化剂的性能.结果表明,微孔体积随着碱金属Cs负载量的增加而逐渐减小,当Cs负载量增加至10wt%时,样品微孔体积从初始0.105cm3/g降至0.063cm3/g.NH3-TPD结果显示,当Cs负载量为1wt%,酸性催化剂载体上的强酸和弱酸活性位被大量碱性氧化物占据;当负载量超过5 wt%时,所有的酸性位均被覆盖.随后考察负载不同碱金属含量分子筛的羟醛缩合反应性能,发现碱金属氧化物的引入不利于羟醛缩合反应的进行,这主要是由于作为甲醛源的DMM只有在酸中心上才能进行分解产生甲醛,促使羟醛缩合反应顺利进行.当采用DMM为甲醛源时,体系中必须有酸性位存在.同时得知,分子筛HZSM-35中强酸和弱酸均是羟醛缩合反应的有效酸性位,但强酸同时催化原料发生类甲醇制烯烃过程,致使大量烃类副产物生成,产生较重的积炭物种.羟醛缩合反应在含有大量弱酸催化剂上(如γ-Al2O3)也可顺利进行,且具有较高的活性和稳定性.

    简便方法制备氮掺杂的碳球用作高效非金属氧还原催化剂
    童金辉, 李文艳, 薄丽丽, 王文慧, 李玉梁, 李涛, 张琦, 范海燕
    2018, 39 (6):  1138-1145.  DOI: 10.1016/S1872-2067(18)63078-5
    摘要 ( 358 )   [Full Text(HTML)] () PDF(835KB) ( 942 )  
    Supporting Information

    随着人们环保意识的不断增强,社会对清洁能源的需求也日益增加.燃料电池具有效率高,燃料来源丰富,可直接将化学能转化成电能且污染小等优点,因而受到了广泛关注.然而,燃料电池的阴极氧还原反应(ORR)速率较慢,成为提高燃料电池整体效率的制约因素.因此,开发高性能的ORR催化剂,加快ORR反应速率具有非常重要的意义.目前,Pt基催化剂被认为是活性最好的商用ORR电催化剂.尽管此类催化剂具有较高的催化活性和良好的稳定性,但Pt的储量有限,价格高昂,抗燃料毒化性能差,限制了其大规模应用.
    近年来,为了减小Pt的用量,降低催化剂成本,人们除了致力于研究贵金属合金催化剂及非贵金属催化剂外,还把目光聚焦在了非金属催化剂,特别是碳及其复合材料的研究上.在众多碳材料中,碳球因具有良好的表面渗透性和较高的机械稳定性而被广泛应用于催化、吸附、药物输送和能量存储及转化等领域中.然而,碳球的表面化学惰性较强,比表面积较低,使其部分应用受到了限制.因此,人们采用了多种方法来调控碳球的物理化学性质.其中,向碳材料中掺入杂原子,尤其是氮原子的方法广受青睐.因为杂原子的掺入会显著增强作为主体的碳原子给电子的能力和表面吸附性质,从而对ORR表现出优异的催化活性和稳定性.
    本文以蔗糖作为碳源,三聚氰胺作为氮源,采用水热法及高温热解法制备了一系列氮掺杂的生物质碳球.并对氮掺杂量及热解温度进行了优化.结果表明,石墨化程度及石墨氮含量的提高,能有效地提高催化剂的活性.在优化了的条件下得到的催化剂N0.1C1.9S-900,表现出了比商业Pt/C催化剂更好的ORR催化性能.在0.1 mol/L KOH中,该催化剂催化ORR的起始电位和半波电位分别为-22.6和-133.6 mV (vs.Ag/AgCl),极限电流密度为4.6 mA/cm2,分别比商业Pt/C高出7.2 mV,5.9 mV和0.2 mA/cm2.同时,在经过30000 s的稳定性测试中,N0.1C1.9S-900催化剂的电流损失也远低于Pt/C,表明该催化剂具有良好的稳定性.此外,在抗甲醇毒化实验中,相比于商业Pt/C,N0.1C1.9S-900催化剂对甲醇有更好的耐受性.另外,该催化剂催化的ORR属于高效的4e-途径.可见,该催化剂作为燃料电池的阴极氧还原反应催化剂具有广阔的前景.