Please wait a minute...

过刊目录

    催化学报
    Chinese Journal of Catalysis

    2018, Vol. 39, No. 2
    Online: 2018-02-18

    封面介绍:

    李兰冬等报道了钴氧化物催化的反应控制羧酸选择加氢制醇过程, 即羧酸的存在可完全抑制醇的进一步转化. 钴氧化物还原为氧化亚钴可大幅度提升羧酸选择加氢催化活性. 见本期第 250–257 页.

    全选选: 隐藏/显示图片
    目录
    第39卷第2期目次
    2018, 39 (2):  0-0. 
    摘要 ( 151 )   PDF(1248KB) ( 625 )  
    综述
    高效氧催化反应中的金属有机骨架材料
    何小波, 银凤翔, 王昊, 陈标华, 李国儒
    2018, 39 (2):  207-227.  DOI: 10.1016/S1872-2067(18)63017-7
    摘要 ( 660 )   [Full Text(HTML)] () PDF(1391KB) ( 1996 )  

    氧电催化反应包括氧气还原反应(ORR)和氧气析出反应(OER).作为核心电极反应,这两个反应对诸多能源存储与转换技术(比如燃料电池、金属空气电池以及全水分解制氢等)的能量效率起决定性作用.然而,ORR和OER涉及多个反应步骤、多个电子转移过程以及多相界面传质过程.这些复杂的过程较大程度上限制了ORR和OER的反应速率.从理论和实践两个方面来看,ORR和OER都需要高效电催化剂的参与来促进其反应速率,从而能够最终提高上述能源存储与转换技术的能量转换或利用效率.
    目前,以Pt,Pd,Ir,Ru为代表的贵金属基电催化剂具有十分突出的电催化性能.但是,过高的成本和过低的储量始终制约着贵金属基电催化剂在催化ORR和OER反应方面,乃至在能源存储与转换技术领域的规模化应用.因而,开发高效非贵金属基氧电催化剂成为近年来能源存储与转换领域的研究重点之一.在众多已经报道的非贵金属基氧电催化剂中,金属有机骨架材料(MOFs)备受瞩目.MOFs是一类由有机配体和金属节点通过配位键自组装而成的晶态多孔材料.它们具备超高比表面积、超高孔隙率以及规则性纳米孔道.相比较其他传统的多孔材料(比如活性炭、分子筛、介孔炭、介孔氧化硅等),MOFs最主要的优势在于它们的结构和功能可以依据需求通过选择合适的有机配体和金属节点进行便利地设计,或通过后处理进行必要的改性和调节.基于独特的多孔特性以及结构与功能的可设计、可调节性,MOFs在气体分离与存储、异相催化、化学传感、药物输送、环境保护以及能源存储与转化等领域都具有潜在的应用价值.因而,近年来,MOFs备受基础研究领域和工业界的青睐.针对MOFs开展的基础研究和应用开发逐渐成为诸多领域的研究焦点.也正由于MOFs具有的上述优异特性,尤其是结构与功能的可设计、可调节性,使得设计制备基于单纯MOFs以及MOFs衍生材料成为开发高效非贵金属基氧电催化剂的新途径.
    本综述首先论述了基于单纯MOFs的氧电催化剂(包括纯MOFs、活性物种修饰的MOFs以及与导电材料构成的复合MOFs)的合成以及它们在ORR或OER催化反应中应用的研究进展.在第二部分论述中,本综述主要针对MOFs衍生的各类氧电催化剂(包括无机微米-纳米结构/多孔碳复合材料、纯多孔碳材料、纯无机微米-纳米结构材料以及单原子型电催化材料)的研究进展进行了简要介绍和讨论.最后,本综述对MOFs基氧电催化剂目前存在的挑战进行了简要分析;同时,也对这类氧电催化剂的通用设计准则以及未来发展方向进行了展望.尽管存在诸多挑战,MOFs始终被认为是极好的"平台"材料.充分利用它们将有利于开发高效且实用的非贵金属基氧电催化剂.

    单核第一过渡周期金属水氧化催化剂
    王妮, 郑浩铨, 张伟, 曹睿
    2018, 39 (2):  228-244.  DOI: 10.1016/S1872-2067(17)63001-8
    摘要 ( 427 )   [Full Text(HTML)] () PDF(1410KB) ( 1237 )  

    由于传统化石能源的不可再生性,其储量日益减少.同时,传统化石能源的使用对环境产生了巨大影响,给人类社会带来了一系列问题,包括温室效应、酸雨等.因此,进入二十一世纪以后,人类面临着日益严峻的能源危机和环境问题,寻找清洁、高效的替代能源已经迫在眉睫.太阳能被认为是一种洁净的可再生能源.自然界通过光合作用将太阳能转化为化学能,在这一过程中,水被氧化产生氧气,同时释放出的电子和质子通过和二氧化碳作用生成碳水化合物.为了模拟这一过程,人工光合作用可以直接将电子和质子结合形成氢气.由此生成的氢气也被认为是洁净的可再生能源,因为在其燃烧过程中只产生水.因此,通过光致水分解析氢析氧的人工光合作用受到了越来越广泛的重视.
    水分解可以分为两个独立的半反应,即水的氧化析氧和水的还原析氢.水的氧化无论在热力学还是动力学方面,都存在着非常大的阻碍.在热力学上,两分子的水氧化生成一分子氧气需要提供很多能量(△E=1.23 V vs NHE).在动力学上,由于涉及到四个氢原子和两个氧原子的重组,并且涉及到氧氧键形成并释放出一分子氧气,因此水氧化是一个非常缓慢的过程.在自然界,水的氧化主要发生在光合作用中,在绿色植物的叶绿体中完成.通过对光合作用的研究,科学家们发现氧气的产生由光系统Ⅱ(PSⅡ)中的释氧中心来完成.释氧中心是一个钙锰簇合物,由四个锰和一个钙组成(Mn4CaOx).自然界水分解产生氧气的过程给了我们很大启示,对设计和研究高效稳定的水氧化催化剂具有一定的指导意义.
    目前水氧化催化剂主要有两大类.第一类是基于材料的水氧化催化剂.该类催化剂的催化效率高,过电势小,但是对水氧化催化过程的机理缺乏深入研究.第二类是基于金属配合物的分子催化剂.相比基于材料的催化剂,分子催化剂具有以下特点:(1)分子催化剂的结构可以通过实验手段表征清楚;(2)可以结合光谱对水氧化的机理进行深入研究,可以对催化过程中间体进行表征;(3)催化剂的结构可以从分子水平上进行修饰,因此可以更好地研究催化效率与结构之间的关系,为设计高效、稳定的催化剂提供必要信息;(4)比较容易组装成分子器件从而应用到实际的水氧化装置中;(5)通过实验与理论的结合,对氧氧成键提出新的认识与理解.
    近几年来,一些单核的金属配合物逐渐被发现可以高效、稳定地催化水氧化.研究表明,一些基于钌和铱的催化剂具有良好的催化活性,但由于金属钌和铱储量少、价格昂贵等因素,限制了该类催化剂的大量使用.由于第一过渡系金属元素具有储量丰富、安全无毒、廉价易得等优势,第一过渡周期金属化合物逐渐成为科学家们研究的热点.近几年来,基于第一过渡系金属的水氧化催化剂已经有大量报道.
    本文主要总结了近几年来基于第一过渡系金属的单核水氧化分子催化剂.通过对催化机理进行深入的讨论,特别是对氧氧成键的总结,本文将对设计合成结构新颖、具有高催化效率和良好稳定性的水氧化分子催化剂提供理论依据.

    快讯
    含1,2二取代的苯并咪唑配体的Zn(II)络合物上化学固定CO2转化为环状碳酸酯
    Jorge L. S. Milani, Igor S. Oliveira, Pamella A. Dos Santos, Ana K. S. M. Valdo,
    2018, 39 (2):  245-249.  DOI: 10.1016/S1872-2067(17)62992-9
    摘要 ( 326 )   [Full Text(HTML)] () PDF(385KB) ( 994 )  

    合成了一种新的Zn(Ⅱ)配合物ZnCl2L12](1)(L1为2-(2-噻吩)-1-(2-噻吩甲基)-1H-苯并咪唑),并采用NMR和IR光谱、元素分析、ESI-HRMS光谱测定和热重分析等对它进行了表征,其分子结构也由单晶X射线衍射确定.络合物1含有单核四面体Zn(Ⅱ)单元,即所谓的锁定的几何结构,这源自分子中存在弱的分子间S…π和π-π配体间相互作用.通过简易的合成路线即可制得苯并咪唑配体及其与Zn(Ⅱ)配合物.采用CO2与环氧化物耦合生成环状碳酸酯反应考察了1的催化活性,以及反应条件的影响.该配合物在无溶剂条件下可高效催化多种环氧化物的转化,具有较好的转化率,TONs和TOFs.

    论文
    高效钴氧化物催化羧酸可控加氢制醇
    宋松, 王栋, 狄璐, 王传明, 戴卫理, 武光军, 关乃佳, 李兰冬
    2018, 39 (2):  250-257.  DOI: 10.1016/S1872-2067(17)63003-1
    摘要 ( 517 )   [Full Text(HTML)] () PDF(1037KB) ( 1312 )  

    羧酸选择加氢是合成醇的重要方法,廉价高效的催化体系仍然在探索中.我们利用地球上储量丰富的钴氧化物作为催化剂,通过控制催化反应过程,进而实现高选择性地催化羧酸加氢制备醇.一系列含有不同官能团的羧酸可以被选择加氢至相应的醇类化合物,反应选择性可以满足工业生产要求.通过一系列的谱学表征以及理论计算,我们证实了钴氧化物在羧酸选择加氢反应中的优选活性位点位为氧化亚钴,从而建立了催化剂与反应活性之间的构效关系,为催化剂的理性设计提供指导.
    首先,我们选取硬脂酸加氢反应作为模型反应,通过对地球上储量丰富的氧化镍、四氧化三铁和四氧化三钴的催化活性对比发现,四氧化三钴催化剂活性最高,在473 K,2 MPa氢气条件下,反应速率可以达到1.2 mmol/(h·g).对四氧化三钴催化剂进行不同温度的预还原处理,我们发现催化剂的活性得到显著提高,其中573 K还原的样品活性最高,反应速率可以达到7.3 mmol/(h·g),要远远高于贵金属催化剂Pd/C(0.6 mmol/(h·g))和Pt/C(1.8 mmol/(h·g)).
    XRD结果表明,随着还原处理温度的不断升高,催化剂由四氧化三钴变为氧化亚钴,最终变为金属态的钴.当还原温度为573 K时,催化剂的组成为单一相氧化亚钴.XPS测试结果表明,当还原温度为573 K时,样品中只含有Co2+的信号峰,并且Co/O的比例为1/1,进一步证明样品是纯态的氧化亚钴.从TEM照片中可以发现,在原始的四氧化三钴样品中观察到晶面间距为0.467和0.244 nm,分别对应四氧化三钴的(111)和(311)晶面.而对于573 K还原的样品只观察到一种晶面间距(0.246 nm),对应氧化亚钴的(111)晶面.
    结合表征手段和硬脂酸催化加氢活性结果,我们得出氧化亚钴是573 K还原样品催化羧酸加氢反应的活性位点.理论计算结果进一步证实了这个实验结论.理论计算结果表明,在氧化亚钴(111)晶面,硬脂酸加氢转换为十八醇是非常快速和高效的,然而,对于氢解C-C键和C-O键,需要耗费更高的能量,能垒约为1.2 eV.因为硬脂酸的吸附远远强于十八醇的吸附,硬脂酸的存在会抑制十八醇氢解形成烯烃的反应,只有当硬脂酸酸完全转化为十八醇,才会发生随后的氢解反应.通过控制催化反应过程,可以实现在氧化亚钴(111)晶面高选择性催化酸加氢至醇,也就是反应控制催化过程.基于氧化亚钴在硬脂酸加氢制备十八醇上的优异催化性能,我们进一步研究了一系列含有不同官能团的羧酸化合物的催化加氢,发现氧化亚钴表现出良好的官能团容忍度,可以实现高效、广谱的酸选择加氢至醇反应.

    χ-氧化铝的添加对纯的和修饰的γ-氧化铝上H2S氧化反应性能的影响
    Svetlana A. Yashnik, Vadim V. Kuznetsov, Zinfer R. Ismagilov
    2018, 39 (2):  258-274.  DOI: 10.1016/S1872-2067(18)63016-5
    摘要 ( 370 )   [Full Text(HTML)] () PDF(1138KB) ( 872 )  

    考察了γ-Al2O3,(γ+χ)-Al2O3和α-Al2O3的结构性质和酸性对其催化H2S直接氧化反应性能(活性、选择性和稳定性)的影响.采用红外光谱(FTIR)与氨-程序升温脱附(NH3-TPD)方法对氧化铝作用下H2S转化为S的反应性能与其酸性进行了比较.结果显示,H2S吸附主要发生在弱Lewis酸位.含有χ相和/或Mg2+修饰的γ-Al2O3样品具有更高浓度的弱Lewis酸位,并表现出更高的催化活性.当氧化铝样品用硫酸溶液处理后,表现出强Lewis酸位性质,且Lewis酸位点数量显著下降.而当用HCl对氧化铝进行修饰时,其对Lewis酸位强度的影响很小,保持着弱Lewis酸位的性质,且其Lewis酸位数量与未修饰的样品相比增加了二倍,但处理过的样品中含有Al-Cl键.用硫酸盐和氯离子修饰过的氧化铝样品在H2S氧化反应中的催化性能均较低.

    桥联有机硅烷组装多级孔TS-1聚集体及其催化性能研究
    陈丽, 薛腾, 丁键, 吴海虹, 张坤, 吴鹏, 何鸣元
    2018, 39 (2):  275-282.  DOI: 10.1016/S1872-2067(18)63026-8
    摘要 ( 356 )   [Full Text(HTML)] () PDF(2461KB) ( 1232 )  

    TS-1分子筛在H2O2参与的有机物分子选择氧化及环氧化反应中具有优异的催化性能,一直广受关注.目前,随着精细化工反应中大分子及液相反应的增多,目前工业上使用的微米级尺寸的沸石晶粒催化材料因其狭窄的孔道和较大的扩散阻力而越来越不能满足工业的实际生产需求与应用.小晶粒纳米沸石由于具有较大的外比表面积和较高的晶内扩散速率,因而在提高催化剂的利用率、增强大分子转化能力、减小深度反应、提高选择性以及降低结焦失活等方面均表现出优越的性能.然而,尺寸低于100 nm的沸石又存在着分离问题.因此,具有高催化活性、又能一步实现分离与回收的纳米沸石聚集体的合成,引起了人们的研究兴趣.目前可以通过使用聚苯乙烯球,球型阴离子交换树脂,硅烷化聚合物,聚合诱导胶体聚集(PICA)等实现纳米沸石聚集体材料的合成.其中采用有机硅烷化试剂来制备多级孔纳米沸石聚集体材料提供了一种新的路线.在沸石晶体表面修饰上有机硅烷化试剂,含Si-C键的有机硅烷化物种可以有效地阻止沸石颗粒的晶体生长,抑制形成大的沸石晶体,从而得到纳米粒子聚集体;同时有机硅烷化物种也对纳米沸石进行了表面改性,提高了其疏水性.特别是在有机相中硅烷化沸石可以形成小的、均匀的、聚集的疏水性的纳米沸石.同时,硅烷化试剂的本质和分子大小是沸石聚集体中多级孔大小的决定性因素.具有可调结构的多级孔沸石晶体可以通过在常规的碱性沸石合成混合物溶液中添加一个两性有机硅表面活性剂而合成.研究发现,固定在沸石纳米晶表面的机硅烷物种Si-C键能部分抑制纳米颗粒进一步聚集成较大的晶体,使用硅烷化晶种的方法可以合成具有高比表面的多级孔ZSM-5等沸石.然而,目前已报道的通过硅烷化晶种方法中得到的多级孔TS-1沸石材料的尺寸仅有100-150 nm,仍不利于分离和回收.近来桥联有机硅烷试剂进入人们的视野——通过干胶法合成多级孔β沸石,然而它们的尺寸也只有300-500 nm,反应分离和回收仍然非常困难.
    本文采用有机桥联硅烷化合物作为硅烷化试剂,将TS-1纳米沸石晶种或者晶体组装聚集成大的沸石聚集体.TEM和SEM结果表明,桥联有机硅烷在沸石晶体的聚集和后续的晶体生长中起到了非常有效的作用,成功地将100 nm左右的纳米沸石晶种或晶体桥联/组装成宏观大尺寸(5-40 μm)的沸石聚集体.这些TS-1聚集体具有较好的机械强度,即使连续超声1 h也不会毁坏其结构,表明所得到的沸石材料可以在制备上解决分离困难并且在催化应用上容易回收.XRD,BET以及UV-Vis分析结果表明,引入在TS-1沸石晶种或者晶体溶液中有机硅烷试剂不会影响沸石的晶体结构、微孔体积以及Ti的配位状态.将H2O2作为氧化剂评价TS-1沸石聚集体和传统的纳米TS-1在烯烃环氧化反应中的催化性能,结果表明,硅烷化步骤对小分子己烯氧化的活性和选择性的影响不大,在环己烯大分子的氧化反应里表现出了较高的活性和选择性.

    纳米分子筛LTA包裹Ni-Salen配合物为修饰碳糊电极用于电催化氧化肼反应
    Seyed Karim Hassaninejad-Darzi
    2018, 39 (2):  283-296.  DOI: 10.1016/S1872-2067(18)63025-6
    摘要 ( 344 )   [Full Text(HTML)] () PDF(1117KB) ( 1009 )  
    Supporting Information

    采用柔性配体法将Ni-salen配合物包裹在纳米分子筛LTA的超笼中,用来修饰碳糊电极制得Ni(Ⅱ)-SalenA/CPE,并采用循环伏安法、计时电流法和计时库仑法考察了该电极电催化氧化0.1 mol/L NaOH溶液中肼反应性能.首先采用无有机模板剂法合成纳米分子筛LTA,并用各种技术进行了表征.XRD和粒径分析结果分别显示LTA晶体的平均粒径为56.1和72nm.在Ni(Ⅱ)-SalenA/CPE电极氧化还原位上水合肼催化氧化反应电子转移系数为0.64,速率常数为1.03×105 cm3/(mol·s).电催化反应机理研究表明,水合肼氧化反应通过它与Ni3+(Salen)O(OH)反应或直接进行电氧化反应.阳极峰电流与扫描速率的平方根呈线性关系,表明反应受扩散控制,水合肼的扩散系数为1.18×10-7 cm2/s.结果表明,Ni(Ⅱ)-SalenA/CPE对水合肼氧化反应表现出高的电催化活性,这是由于纳米分子筛LTA的多孔结构以及Ni(Ⅱ)-Salen的存在.最后研究了水合肼在碱性溶液中Ni(Ⅱ)-SalenA/CPE电极上的氧化反应机理,发现其为四电子过程,第一个电子转移反应为速率控制步骤,然后是一个三电子过程,产生环境友好的最终产物氮气和水.

    氧化锆改性的Ni/LaAl11O18用于CO甲烷化反应:催化剂结构对催化性能的影响
    艾红梅, 杨洪远, 刘庆, 赵国明, 杨静, 古芳娜
    2018, 39 (2):  297-308.  DOI: 10.1016/S1872-2067(17)62995-4
    摘要 ( 354 )   [Full Text(HTML)] () PDF(1901KB) ( 1082 )  

    对于煤制天然气,CO甲烷化技术起着重要作用,其研究核心之一是高效催化剂的开发.目前,CO甲烷化催化剂主要采用金属Ni作为活性组分,但存在高温易烧结和易积炭等问题.因此,如何使其同时具有较高的催化活性和高温稳定性是亟待解决的问题.针对这些问题,本文以高热稳定性的六铝酸镧(LaAl11O18)为载体,采用浸渍法担载金属镍,制备了Ni/LaAl11O18催化剂;以高化学惰性的ZrO2为包覆层,采用改进的连续吸附反应法,将ZrO2前驱体液相沉积在Ni/LaAl11O18表面进行改性,制备了具有包覆结构的Ni/LaAl11O18@ZrO2甲烷化催化剂.探讨了ZrO2在Ni/LaAl11O18表面的分布形式以及不同沉积包覆量对催化剂结构、CO甲烷化催化剂活性和稳定性的影响.分别采用氮气物理吸附、X射线衍射、透射电镜、扫描电镜、氢气程序升温还原、氢气程序升温脱附、X射线光电子能谱、热重分析和电感耦合等离子体原子发射光谱法等手段对催化剂进行了系统表征.结果表明,ZrO2纳米粒子能够同时分布在催化剂活性组分和载体表面,增加了金属-载体间相互作用力,高温还原时可以有效抑制活性金属Ni的烧结,成功构筑了具有显著限域结构的包覆型催化剂.同时,ZrO2的包覆不利于金属的氢气化学吸附.在常压,260-600 oC和120 L g-1 h-1条件下对催化剂进行了催化活性测试.结果显示,与未改性的催化剂相比,包覆后催化剂上CO转化率略有降低,但是其CH4选择性明显提高,适量的ZrO2包覆对CH4得率有较好的促进作用,但是过量的ZrO2包覆会因占据过多的金属镍表面使得CO转化率显著降低.在常压,550 oC和120 L g-1 h-1空速的操作条件下所进行的107 h稳定性测试结果表明,包覆型Ni/LaAl11O18@ZrO2催化剂展示了良好的高温稳定性,具有优异的抗烧结和抗积碳性能.这主要是因为包覆型催化剂具有良好的"限域"效应,从而显著改善了催化剂的抗烧结性能;同时较强的金属-载体相互作用以及ZrO2助剂对CO2的活化提升了催化剂的消碳能力,增强了Ni/LaAl11O18@ZrO2催化剂的抗积碳能力.总之,本文构筑了一种高稳定性的包覆型催化剂Ni/LaAl11O18@ZrO2,可广泛应用到其他多种高温反应中.

    镁铝酸碱双功能氧化物催化剂上醇胺氧化耦合合成亚胺性能
    宋金玲, 于贵阳, 李玺, 杨胥微, 张文祥, 闫文付, 刘钢
    2018, 39 (2):  309-318.  DOI: 10.1016/S1872-2067(17)63006-7
    摘要 ( 347 )   [Full Text(HTML)] () PDF(1511KB) ( 1022 )  

    亚胺是一类重要的含氮有机化合物,由于具有不饱和C=N双键,可以作为一种有效的氮源,用于一系列含氮衍生物的合成.目前合成亚胺的工艺路线主要是通过羰基化合物和一级胺在强酸条件下缩合;与该路线相比,醇和胺在空气或氧气存在条件下耦合是一条更为绿色的工艺路线,其副产物只有水产生.目前的报道表明,一些具有氧化还原性质的催化剂,如负载型贵金属催化剂和负载型过渡金属氧化物催化剂在该反应中表现出一定催化性能,但很少关注表面酸碱性质对该反应性能的影响.在本工作中,我们尝试将具有酸碱双功能性质的Mg-Al复合氧化物作为催化剂用于该反应中,考察了Mg/Al比、焙烧温度和后处理条件对催化性能的影响.结果显示,Mg/Al=3的催化剂在反应中表现出最优的催化活性;NH3-TPD和CO2-TPD显示,随着镁含量的增加,样品表面碱性中心的数量呈现出先增加后减少的趋势,其中Mg/Al=3的样品表面酸、碱总量最大,而且该样品表面弱碱中心数量也最多;我们通过焙烧和探针分子吸附等后处理手段进一步调控了催化剂表面的酸碱性质,初步结果表明在酸碱中心的协同作用下可以有效地催化醇和胺的氧化耦合反应;其中弱碱性位可能是活化醇的主要活性中心,而醇的氧化是该反应的速控步骤,因此可以推测表面弱碱中心的数量在一定程度上决定着催化剂在该反应中的性能.

    MIL-101(Cr)-NH2负载Pd低温催化糠醛高选择性加氢生成四氢糠醇
    殷冬冬, 任航星, 李闯, 刘进轩, 梁长海
    2018, 39 (2):  319-326.  DOI: 10.1016/S1872-2067(18)63009-8
    摘要 ( 637 )   [Full Text(HTML)] () PDF(600KB) ( 1814 )  
    Supporting Information

    随着资源枯竭和环境污染严重问题的凸显,生物质转化的研究越来越多,特别是生物质催化裂解制备生物燃料及高附加值的化学品.糠醛是一种半纤维素酸解的产物,也是生产糠醇、四氢糠醇、2-甲基呋喃、环戊酮等的重要原料.其中四氢糠醇既可以用于生产其他高附加值化学品,也可以用作生物燃料或者燃料添加剂.虽然Pd/MFI,Ni/SiO2,Pd-Ir/SiO2等催化剂均可用于糠醛选择加氢制备四氢糠醇,但是反应通常在高温高压条件下进行.为此我们希望找到一种在温和条件下使用的高效催化剂.MOF多孔材料具有丰富的孔道结构、极高的比表面积、表面可修饰的特点,还可与其他客体发生相互作用,进而影响催化性能.因此本课题组合成了一种含有氨基的MOF材料MIL-101(Cr)-NH2,进一步利用表面氨基吸附Pd的氯酸盐前体,经还原直接制得负载型催化剂Pd@MIL-101(Cr)-NH2,并用于糠醛选择加氢反应.
    本文采用X射线粉末衍射(PXRD)、热重分析(TG)、N2物理吸附-脱附、透射电镜(TEM)等手段表征了所制的MOFs和催化剂.通过将MIL-101(Cr)-NH2和不同Pd@MIL-101(Cr)-NH2的XRD谱与标准谱图对比,发现MIL-101(Cr)-NH2已成功合成,并在催化剂制备过程中和反应之后仍然保持稳定.TG结果表明,所制备MIL-101(Cr)-NH2在低于350℃时结构不会被破环.MIL-101(Cr)-NH2的比表面积可达到1669 m2 g-1,孔容达1.35 cm3 g-1,从而为Pd纳米粒子均匀分散在载体上提供了可能性.各Pd@MIL-101(Cr)-NH2样品的TEM照片我们看出,Pd纳米粒子可均匀分散在MIL-101(Cr)-NH2上,粒径为3-4 nm.对比实验表明,氨基与金属的相互作用有利于Pd纳米粒子分散均匀.
    将Pd@MIL-101(Cr)-NH2用于糠醛选择加氢反应时,在40℃,2 MPa H2的温和条件下,反应6 h后糠醛完全转化为四氢糠醇其选择性接近100%.表现出比文献报导的更加优异的催化性能.这得益于高度均匀分散的Pd纳米粒子,以及催化剂载体与Pd纳米粒子的配位作用和π-π相互作用.结果还表明当高于80℃反应时,即有副产物生成,进一步提高反应温度会促进环戊酮的生成.可见,Pd@MIL-101(Cr)-NH2所表现的低温高加氢活性对提高四氢糠醇选择性至关重要.

    吡啶基桥联双四唑钌(II)配合物催化酮的转移氢化反应
    王连弟, 刘婷婷
    2018, 39 (2):  327-333.  DOI: 10.1016/S1872-2067(17)62994-2
    摘要 ( 339 )   [Full Text(HTML)] () PDF(521KB) ( 886 )  

    含氮配体具有稳定性好、易于合成等优点,而且其过渡金属配合物表现出较高的催化活性,因而在配位化学和均相催化等研究领域受到了广泛关注.基于吡啶骨架的三齿NNN配体具有良好的配位能力和丰富的配位模式,如吡啶桥联的对称配体2,2':6',2"-三吡啶、2,6-双噁唑啉基吡啶、2,6-双亚胺基吡啶和2,6-双吡唑基吡啶等在有机合成及配合物催化剂制备等方面得到广泛应用.2,6-双四唑基吡啶也是基于吡啶的多齿配体,已被用于合成发光材料或高效回收次锕系元素等,但是其在催化领域的应用较少.
    过渡金属催化的不饱和化合物的转移氢化反应具有反应条件温和、不直接使用氢气等优点,因而受到越来越多的关注.一系列优异的配体及配合物在转移氢化反应中脱颖而出,如对甲苯磺酰手性二胺配体、2-甲胺基吡啶钌配合物、配体中含有NH官能团的过渡金属配合物等.我们也报道了几种吡啶基桥联的含氮配体及其钌配合物,并应用于催化酮的转移氢化反应.在此基础上,本文合成了三种连有不同膦配体的2,6-双四唑基吡啶钌配合物,并用于催化酮的转移氢化反应.
    N2N6-二对甲苯基-2,6-吡啶二甲酰胺(1)出发,经氯代/环化两步反应合成4-氯吡啶基桥联双四唑化合物(2),配体2与RuCl2(PPh33在对应的反应条件下制得三种连有不同膦配体的2,6-双四唑基吡啶钌配合物(3),其分子结构通过核磁共振波谱和X射线单晶晶体结构测定得到确认.将这三种钌配合物应用于催化酮的转移氢化反应,当催化剂用量为0.5 mol%时,在异丙醇回流条件下,比较连有不同膦配体的2,6-双四唑基吡啶钌配合物的催化活性.膦配体为1,4-双(二苯基膦)丁烷的钌配合物3b表现出更高的催化活性,含有双三苯基膦的钌配合物3a则表现出与3b相当或略低的催化活性,含有1,5-双(二苯基膦)戊烷的钌配合物3c活性最差.以3b为催化剂拓展了一系列酮底物,取代的芳香酮、链状和环状的脂肪酮都可以高效地被还原,大部分酮底物以>95%的转化率还原成相应的醇.含有氯取代基的苯乙酮对反应有较大的加速作用,反应时间更短,转化率更高.由于羰基环的张力,1-四氢萘酮与9-芴酮转化率略低.
    结合实验结果与相关文献,提出了一条基于Ru-H活性中间体的内层反应机理:钌配合物在iPrOK作用下生成Ru(Ⅱ)-烷氧基中间体I,随后发生β-H消除反应脱去一分子丙酮得到Ru-H配合物,Ru-H配合物与酮底物作用经过渡态生成另一分子Ru(Ⅱ)-烷氧基中间体,随后异丙醇与烷氧基发生交换生成目标产物,同时生成中间体I完成催化循环.

    基于多金属氧酸盐的介孔离子催化剂催化苯一步氧化制苯酚
    赵萍萍, 张云云, 李道宽, 崔洪友, 张丽鹏
    2018, 39 (2):  334-341.  DOI: 10.1016/S1872-2067(17)62991-7
    摘要 ( 382 )   [Full Text(HTML)] () PDF(701KB) ( 1028 )  

    苯酚是一种重要的有机化工原料,工业上主要采用合成路线长、原子利用率低、能耗高、环境污染严重的异丙苯法生产.当前,随着绿色化学的普及,H2O2催化苯一步氧化制苯酚受到越来越多的关注.在研究的众多催化剂中,钒取代杂多酸被认为是该反应最有效的催化剂之一.然而,纯杂多酸易溶于H2O2催化的苯羟基化反应体系,导致污染严重、后处理和分离困难.为了获得可回收的固体杂多酸催化剂,通常将其负载于多孔载体上,但这种方法常伴随着活性组分易溶脱,反应速率慢等缺点.因此,在H2O2催化苯一步氧化制苯酚体系中获得高效、可重复使用的杂多酸基固体催化剂仍然是一个挑战.
    采用有机单元修饰杂多酸是制备杂多酸基固体催化剂的有效方法.研究表明,有机基团的引入可以有效调控杂多酸的溶解性和氧化还原性.另一方面,催化剂中的疏水微环境也能有效促进非极性底物与催化活性中心的相互作用,提高反应速率,改善催化活性.因此,我们通过离子交换法将对二甲苯型双核咪唑离子液体阳离子与含钒杂多阴离子结合,研究制备了一种具有疏水微环境的介孔杂多酸基离子固体催化剂.采用傅里叶变换红外光谱、X射线衍射、扫描电镜、N2吸附-脱附和CHN元素分析等表征手段对催化剂进行全面分析.结果表明,该催化剂是一种具有较高比表面积的半无定形疏水有机杂多酸盐.在H2O2催化的苯一步氧化制苯酚反应中引导了液-固两相催化体系,在反应时间1 h,反应温度70 ℃,苯酚产率可达到28.9%,与均相纯杂多酸的催化活性基本相当,且催化剂重复使用性能良好.催化剂构效关系和反应动力学研究表明,高比表面积和疏水微环境的构建加快了苯与催化活性中心的相互作用,提高了催化反应速率和产物选择性.同时,咪唑基离子液体阳离子通过分子内的电子相互作用改善了杂多阴离子的氧化还原能力,也赋予固体催化剂更高的催化活性.该研究为H2O2催化苯一步氧化制苯酚反应提供了一种制备简单,经济高效,可重复使用的杂多酸基固体催化剂.

    高活性甲醇氧化电催化剂Pt-Pd纳米合金的组分可控合成
    赵海强, 齐卫宏, 周鑫峰, 吴灏斐, 李业军
    2018, 39 (2):  342-349.  DOI: 10.1016/S1872-2067(18)63020-7
    摘要 ( 457 )   [Full Text(HTML)] () PDF(600KB) ( 1026 )  
    Supporting Information

    Pt纳米粒子由于其本身独特的物理、化学性质以及能够同时促进氧化和还原反应,在工业生产和商业设备中(尤其在直接甲醇燃料电池中)广泛用作重要的电催化剂.然而,Pt作为贵金属在自然界中的含量极其稀少,价格昂贵;另外,甲醇氧化反应中产生的中间产物CO很容易市Pt纳米粒子中毒而失活.因此,迫切需要一种Pt用量少,催化性能高的材料.
    一制备高活性比表面积的Pt纳米颗粒,可以有效提高Pt利用率.另外,调控纳米粒子使其裸露特定的晶面、边、角以及缺陷也能有效提升催化性能.还可以采用Pt纳米粒子结合其它金属元素形成双金属合金,如,Pt-M(M=Pd,Au,Ag,Ru,Fe,Co,Ni,等)催化剂,可以在减少Pt元素用量的同时有效提升催化活性.在众多可供选择的元素中,Pd相对于Pt价格低廉,但两者具有相近的物理、化学性质以及较高的电催化性能,使Pt-Pd纳米合金呈现十分优异的电催化性能.研究表明,Pt-Pd纳米合金在酸性和CO环境中能有效催化有机小分子电氧化过程.另外,在酸性环境中,用Pd替代Cu,Ag,Co或Ni,可以有效减少催化剂的腐蚀.
    本文在乙二醇溶液中同时还原K2PtCl4和Na2PdCl4,在110℃反应5 h制备出超细的Pt-Pd纳米合金.通过X射线衍射(XRD)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)以及能谱仪(EDS)对合金进行表征,从而确定产物为尺寸4 nm左右的Pt-Pd纳米合金,且通过改变金属前驱体的投料比可以有效调控Pt-Pd合金组分(按元素比例分别表示为Pt1Pd3,Pt1Pd1,Pt3Pd1).采用循环伏安法、线性扫描伏安法以及计时安培法等多种手段测试样品在0.5 mol/L H2SO4和0.5 mol/L CH3OH的酸性环境中(50 mV/s)电化学性能,并与商业Pt/C进行比较.结果表明,合金的催化性能和组分密切相关,当Pt元素的含量为75%左右时,Pt-Pd纳米合金表现出最佳的催化活性和稳定性,其中Pt3Pd1的电催化质量活性可达商业Pt/C的7倍之多.我们把Pt-Pd纳米合金的催化性能对其组分的依赖性归结为甲醇氧化反应中的双官能团机制,反应中,Pt可有效催化甲醇脱氢产生Pt-CO,Pd则催化水脱氢形成Pd-OH.当Pd含量减少时,Pt表面的水脱氢反应只有在高电位才能发生,从而降低催化效率;而Pd含量过多,则会抑制Pt催化甲醇的脱氢反应,使催化效率大大降低.因此,只有适宜Pt/Pd比例,才能有效提升催化效率.