近年来, 金属-有机骨架(MOFs)作为一种多相光催化剂因其合成方法多样、活性位点可调等优点被越来越多地应用于光催化还原Cr(VI)、还原CO2和降解有机污染物等领域. 但多数MOFs被其电导率低、电子与空穴的快速复合以及仅在紫外光下激发下才能表现出光催化活性等缺点限制了其进一步应用. 为此, 与g-C3N4、Ag2CO3、TiO2、Bi24O31Br10等半导体、电活性聚合物(PANI)、导体(RGO)、贵金属纳米颗粒(Ag, Pd)等构建复合物是增强MOFs光催化性能的一个有效策略.
本文采用简单的机械球磨法, 以BUC-21和N-K2Ti4O9为前驱体快速制备了一系列BUC-21/N-K2Ti4O9复合材料(记为B1NX, 其中X = 0.2, 0.5, 1, 2, 3和4, 代表N-K2Ti4O9在复合物中的比例). 采用粉末X射线衍射(PXRD)、傅里叶变换红外光谱(FTIR)、扫描电镜(SEM)、透射电镜(TEM)、高倍透射电镜(HRTEM)、紫外-可见漫反射(UV-Vis DRS)和X射线光电子能谱(XPS)等技术对UAC-X复合物的形貌和结构进行了表征. 研究了B1NX在紫外光和白光照射下光催化还原六价铬(Cr(VI))的性能. 探究了不同pH (pH = 2-8)、不同小分子有机酸(柠檬酸、酒石酸和草酸)及共存离子(自来水和湖水中的离子)对光催化还原Cr(VI)的影响. 结果表明, PXRD谱图显示B1NX的衍射峰位置分别与BUC-21和N-K2Ti4O9峰位置完全吻合. SEM、TEM、EDS和HRTEM图片证明在B1NX复合物中BUC-21附着在N-K2Ti4O9表面. 在紫外光照射下40 min后, B1N0.5的光催化活性最高, 还原效率达到100.0%, 且还原速率是BUC-21的1.42倍. 而在白光照射下, 随着N-K2Ti4O9含量的增加, 复合物的光催化活性先增后减. 最佳比例B1N3可在100 min时还原99%的Cr(VI), 远远优于对Cr(VI)几乎无还原能力的BUC-21和N-K2Ti4O9. 这是因为N-K2Ti4O9含量的增加不仅有利于电荷的转移, 也有利于白光的利用. 在紫外光和白光照射下, 随着溶液pH值从2提高到8, 还原效率逐渐降低. 这是因为在酸性条件下H+浓度高有利于Cr(VI)还原为Cr(III), 而当pH>6时, Cr3+与OH-形成Cr(OH)3沉淀附着在催化剂表面, 影响对光的吸收, 降低了光催化效率. 当反应体系中加入草酸、柠檬酸和酒石酸等小分子有机酸时, 光催化速率得到显著提高, 这是由于小分子链烃有机物容易捕捉光生空穴. 共存离子实验表明, 虽然湖水和自来水中的共存离子对B1N0.5和B1N3的还原性能稍有抑制, 但当反应时间延长时, 这种影响可忽略不计. 表观量子效率实验证明B1NX还原Cr(VI)是光诱导过程. 光致发光分析、时间分辨光致发光分析、电化学分析、电子自旋共振(ESR)和活性物质捕获实验显示, B1N0.5和B1N3中BUC-21最低未占轨道(LUMO)上的光生电子转移至N-K2Ti4O9导带, 提高了光生电子和空穴的分离效率, 最终增强了光催化还原Cr(VI)的活性. N-K2Ti4O9的引入也使得BUC-21的光吸收区域拓展至白光, 实现了其实际应用的潜力. 同时, B1N0.5在紫外光照射下和B1N3在白光照射下经过5次光催化循环实验后其还原Cr(VI)效率仍然可达99%, 且PXRD谱图、SEM和TEM图像未见明显变化, 表明其具有稳定性和重复利用性. 综上, BUC-21/N-K2Ti4O9是一种具有应用前景的高效复合型光催化剂.