随着社会的高速发展, 化石燃料的消耗量急剧上升, 这不仅导致了能源的短缺, 而且引发了二氧化碳(CO2)及其他有害气体的过量排放, 造成环境污染. 利用太阳能将CO2光催化转化为碳基燃料是解决上述问题的一种有效途径. 在众多半导体光催化材料中, 钙钛矿氧化物(CoTiO3)由于具有独特的电子和晶体结构以及较好的稳定性而备受关注. 然而, 由于单一半导体光催化剂中光生电子-空穴对的复合率较高, 导致其催化还原CO2的能力有限, 制约了其在可见光催化反应中的实际应用. 研究发现, 构建异质结是提高半导体光催化还原CO2效率的重要策略之一, 因此寻找可与CoTiO3能带结构很好匹配的半导体材料至关重要. 近年来, 有机聚合物g-C3N4因具有独特的层状结构、较好的热稳定性和化学稳定性, 对可见光响应性能良好而受到人们的关注. 本研究旨在构建g-C3N4与CoTiO3的S型异质结, 以优化体系中光生载流子分离效率, 从而有效提升光催化性能.
本文首先采用静电纺丝法制备出CoTiO3纳米纤维, 然后通过一步煅烧法构建CoTiO3/g-C3N4 S型异质结光催化剂. X射线衍射仪、傅里叶红外光谱仪、扫描电镜和透射电镜结果证实成功制得了CoTiO3/g-C3N4复合光催化剂. 在可见光照射下, 测试了不同CoTiO3质量百分含量(0.5%, 1%, 1.5%, 2%和3%, 命名为0.5% CTO/CN, 1% CTO/CN, 1.5% CTO/CN, 2% CTO/CN和3%CTO/CN)的CoTiO3/g-C3N4 S型异质结光催化剂对CO2的还原能力(反应时间为4 h). 结果发现, 2% CTO/CN催化剂显示出最高的光催化性能, 其催化生成CO和CH4的产率分别为46.5和0.825 mol g-1 h-1, 且生成CO的选择性为98.3%. 同时, 为了进一步验证光催化性能增强规律, 作为补充实验, 进行了盐酸四环素(TCH)、土霉素(OTC)和氧氟沙星(OFX)光催化降解实验. 结果表明, 2% CTO/CN表现出最高的光催化降解效率, 2% CTO/CN在光催化CO2还原和抗生素降解方面均表现出较好的催化性能, 这归因于g-C3N4与CoTiO3之间S型异质结的形成. 此外, 为了讨论光催化还原CO2的选择性, 采用原位红外和理论计算得到中间体的活化过程及其吉布斯自由能, 并利用同位素标定实验进一步确认了光催化还原CO2反应产物中碳源均来自于CO2气氛.
经过稳态荧光、时间分辨荧光、瞬态光电流响应和电化学阻抗图谱测试进一步验证表明, 2% CTO/CN异质结的形成降低了光生电子-空穴对的复合率和界面电荷转移电阻, 为电荷转移提供了更好的路径, 从而提高了光催化性能. 为了深入探究S型异质结的反应机理, 通过原位X射线光电子能谱、原位电子顺磁共振和密度泛函理论计算研究了光照前后界面处电子流向. 具体来说, 在g-C3N4和CoTiO3接触之前, g-C3N4的功函数小于CoTiO3, 费米能级高于CoTiO3; 当g-C3N4和CoTiO3接触时, 电子会从g-C3N4转移到CoTiO3, 直到它们的费米能级达到平衡. 此时, g-C3N4侧的界面电子耗尽, CoTiO3侧的界面电子富集, 使g-C3N4的带边向上弯曲带正电, 而CoTiO3的带边向下弯曲带负电. 从而, 在CTO/CN的界面处形成了内建电场(IEF), 阻碍电子从g-C3N4向CoTiO3的持续流动. 光照时, 光子同时被CoTiO3和g-C3N4吸收, 激发电子从价带跃迁至相应的导带. 随后, 在形成的IEF驱动下, CoTiO3中的光生电子倾向于迁移到g-C3N4, 与g-C3N4中的光生空穴结合, 使得体系中还原性和氧化性更强的电子和空穴得以保留, 从而进一步提高光催化性能. 综上, S型电荷转移途径不仅促进了光生载流子的分离, 使得更多电子参与反应, 而且同时保留了还原性和氧化性较强光生电子和空穴, 因此, CTO/CN在光催化还原CO2和降解抗生素方面表现出较好的性能. 本文为基于g-C3N4的S型异质结材料在CO2光还原和抗生素降解领域的应用提供参考.